Skip to main content
Log in

Interface interaction-mediated design of tough and conductive MXene-composited polymer hydrogel with high stretchability and low hysteresis for high-performance multiple sensing

基于界面相互作用的具有高伸展和低滞后性的坚韧导电MXene基复合聚合物水凝胶用于高性能多功能传感器

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Conductive hydrogels based on two-dimensional (2D) nanomaterials, MXene, have emerged as promising materials for flexible wearable sensors. In these applications, the integration of high toughness, ultrastretchability, low hysteresis, self-adhesiveness, and multiple sensory functions into one gel is essential. However, serious issues, such as easy restacking and inevitable oxidation of MXene nanosheets in aqueous media and weak interfacial bindings between MXene and the gel network, make it almost impossible to achieve the multiple performances mentioned above. Here we present a conductive MXene-composited polymer (MCP) hydrogel by incorporating gelatin-modified MXene into polyacrylamide (PAAm) hydrogel for the fabrication of multifunctional sensors. The presence of gelatin not only greatly improves the stability of the MXene nanosheets by forming a protective sheath, but also largely enhances the interfacial interactions between the MXene and the hydrogel network as molecular glues. Thus, the MCP hydrogel exhibits a high strength (430 kPa), remarkable stretchability (1100%), low hysteresis (<10% at 500% cyclic tensile), and excellent repeatable adhesion. The resultant MCP hydrogel-based versatile sensors display a high strain sensitivity with a broad working range (gauge factor (GF) = 8.83, up to 1000%), realizing the detection of various human motions. Moreover, the prepared sensors possess superior thermosensitive capacities (1.110/°C) for the measurement of body temperature. This strategy opens horizons to designing high-performance MXene-based hydrogels for advanced sensing platforms.

摘要

基于二维纳米材料MXene的导电水凝胶, 已成为柔性可穿戴传感器领域的非常有前景的材料. 在这些应用中, 制备同时具有高韧性、 超弹性、 低滞后性、 自粘性和多种感官功能的凝胶至关重要. 然而, MXene纳米片在水介质中容易重新堆积, 不可避免会被氧化, 以及MXene和凝胶网络之间薄弱的界面结合等问题, 使得MXene基水凝胶几乎不可能实现上述多种性能. 在文中, 我们将明胶改性的MXene引入到聚丙烯酰胺(PAAm)水凝胶中, 制备了一种导电的MXene-复合聚合物(MCP)水凝胶, 用于制造多功能传感器. 明胶的存在不仅通过形成一个保护鞘大大改善了MXene纳米片的稳定性, 而且作为分子胶还在很大程度上增强了MXene和水凝胶网络之间的界面相互作用. 因此, MCP水凝胶表现出高强度(430 kPa)、 显著的可拉伸性(1100%)、 低滞后性(在500%的循环拉伸下滞后率<10%)和良好的可重复粘附性. 所得的基于MCP水凝胶的多功能传感器显示出高应变灵敏度, 工作范围大(GF = 8.83, 最高1000%), 实现了对各种人体运动的检测. 此外, 所制备的传感器还具有卓越的热敏能力(1.110/°C), 可用于测量体温. 这一策略为设计高性能MXene基水凝胶提供了新的思路.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chortos A, Liu J, Bao Z. Pursuing prosthetic electronic skin. Nat Mater, 2016, 15: 937–950

    Article  CAS  Google Scholar 

  2. Xu S, Zhang Y, Jia L, et al. Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science, 2014, 344: 70–74

    Article  CAS  Google Scholar 

  3. Li L, Pan L, Ma Z, et al. All inkjet-printed amperometric multiplexed biosensors based on nanostructured conductive hydrogel electrodes. Nano Lett, 2018, 18: 3322–3327

    Article  CAS  Google Scholar 

  4. Zhao D, Zhu Y, Cheng W, et al. Cellulose-based flexible functional materials for emerging intelligent electronics. Adv Mater, 2021, 33: 2000619

    Article  CAS  Google Scholar 

  5. Hammock ML, Chortos A, Tee BCK, et al. 25th anniversary article: The evolution of electronic skin (E-skin): A brief history, design considerations, and recent progress. Adv Mater, 2013, 25: 5997–6038

    Article  CAS  Google Scholar 

  6. Yang Y, Shi L, Cao Z, et al. Strain sensors with a high sensitivity and a wide sensing range based on a Ti3C2Tx (MXene) nanoparticle-nanosheet hybrid network. Adv Funct Mater, 2019, 29: 1807882

    Article  Google Scholar 

  7. Liu Q, Tai H, Yuan Z, et al. A high-performances flexible temperature sensor composed of polyethyleneimine/reduced graphene oxide bilayer for real-time monitoring. Adv Mater Technol, 2019, 4: 1800594

    Article  Google Scholar 

  8. Lei Z, Wu P. Zwitterionic skins with a wide scope of customizable functionalities. ACS Nano, 2018, 12: 12860–12868

    Article  CAS  Google Scholar 

  9. Qin Z, Sun X, Zhang H, et al. A transparent, ultrastretchable and fully recyclable gelatin organohydrogel based electronic sensor with broad operating temperature. J Mater Chem A, 2020, 8: 4447–4456

    Article  CAS  Google Scholar 

  10. Bai J, Wang R, Wang X, et al. Biomineral calcium-ion-mediated conductive hydrogels with high stretchability and self-adhesiveness for sensitive iontronic sensors. Cell Rep Phys Sci, 2021, 2: 100623

    Article  CAS  Google Scholar 

  11. Ding Q, Wu Z, Tao K, et al. Environment tolerant, adaptable and stretchable organohydrogels: Preparation, optimization, and applications. Mater Horiz, 2022, 9: 1356–1386

    Article  CAS  Google Scholar 

  12. Wu Z, Yang X, Wu J. Conductive hydrogel- and organohydrogel-based stretchable sensors. ACS Appl Mater Interfaces, 2021, 13: 2128–2144

    Article  CAS  Google Scholar 

  13. Wu Z, Shi W, Ding H, et al. Ultrastable, stretchable, highly conductive and transparent hydrogels enabled by salt-percolation for high-performance temperature and strain sensing. J Mater Chem C, 2021, 9: 13668–13679

    Article  CAS  Google Scholar 

  14. Darabi MA, Khosrozadeh A, Mbeleck R, et al. Skin-inspired multifunctional autonomic-intrinsic conductive self-healing hydrogels with pressure sensitivity, stretchability, and 3D printability. Adv Mater, 2017, 29: 1700533

    Article  Google Scholar 

  15. Liao M, Wan P, Wen J, et al. Wearable, healable, and adhesive epidermal sensors assembled from mussel-inspired conductive hybrid hydrogel framework. Adv Funct Mater, 2017, 27: 1703852

    Article  Google Scholar 

  16. Thoniyot P, Tan MJ, Karim AA, et al. Nanoparticle-hydrogel composites: Concept, design, and applications of these promising, multifunctional materials. Adv Sci, 2015, 2: 1400010

    Article  Google Scholar 

  17. Gan D, Huang Z, Wang X, et al. Graphene oxide-templated conductive and redox-active nanosheets incorporated hydrogels for adhesive bioelectronics. Adv Funct Mater, 2020, 30: 1907678

    Article  CAS  Google Scholar 

  18. Li L, Chen Z, Shao C, et al. Graphene hybrid anisotropic structural color film for cardiomyocytes’ monitoring. Adv Funct Mater, 2020, 30: 1906353

    Article  CAS  Google Scholar 

  19. Han S, Liu C, Lin X, et al. Dual conductive network hydrogel for a highly conductive, self-healing, anti-freezing, and non-drying strain sensor. ACS Appl Polym Mater, 2020, 2: 996–1005

    Article  CAS  Google Scholar 

  20. Qin Z, Sun X, Yu Q, et al. Carbon nanotubes/hydrophobically associated hydrogels as ultrastretchable, highly sensitive, stable strain, and pressure sensors. ACS Appl Mater Interfaces, 2020, 12: 4944–4953

    Article  CAS  Google Scholar 

  21. Anasori B, Lukatskaya MR, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater, 2017, 2: 16098

    Article  CAS  Google Scholar 

  22. Pang J, Mendes RG, Bachmatiuk A, et al. Applications of 2D MXenes in energy conversion and storage systems. Chem Soc Rev, 2019, 48: 72–133

    Article  CAS  Google Scholar 

  23. Alhabeb M, Maleski K, Anasori B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem Mater, 2017, 29: 7633–7644

    Article  CAS  Google Scholar 

  24. Hantanasirisakul K, Gogotsi Y. Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Adv Mater, 2018, 30: 1804779

    Article  Google Scholar 

  25. Zhang YZ, El-Demellawi JK, Jiang Q, et al. MXene hydrogels: Fundamentals and applications. Chem Soc Rev, 2020, 49: 7229–7251

    Article  CAS  Google Scholar 

  26. Zhang YZ, Lee KH, Anjum DH, et al. MXenes stretch hydrogel sensor performance to new limits. Sci Adv, 2018, 4: eaat0098

    Article  Google Scholar 

  27. Lu Y, Qu X, Zhao W, et al. Highly stretchable, elastic, and sensitive MXene-based hydrogel for flexible strain and pressure sensors. Research, 2020, 2020: 1–13

    Google Scholar 

  28. Li Y, Yan J, Liu Y, et al. Super tough and intelligent multibond network physical hydrogels facilitated by Ti3C2Tx MXene nanosheets. ACS Nano, 2022, 16: 1567–1577

    Article  CAS  Google Scholar 

  29. Chhetry A, Sharma S, Barman SC, et al. Black phosphorus@laser-en-graved graphene heterostructure-based temperature-strain hybridized sensor for electronic-skin applications. Adv Funct Mater, 2020, 31:2007661

    Article  Google Scholar 

  30. Liao H, Guo X, Wan P, et al. Conductive MXene nanocomposite organohydrogel for flexible, healable, low-temperature tolerant strain sensors. Adv Funct Mater, 2019, 29: 1904507

    Article  Google Scholar 

  31. Boland CS, Khan U, Ryan G, et al. Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites. Science, 2016, 354: 1257–1260

    Article  CAS  Google Scholar 

  32. González-Domínguez JM, Martín C, Durá ÓJ, et al. Smart hybrid graphene hydrogels: A study of the different responses to mechanical stretching stimulus. ACS Appl Mater Interfaces, 2018, 10: 1987–1995

    Article  Google Scholar 

  33. Cai Y, Shen J, Yang CW, et al. Mixed-dimensional MXene-hydrogel heterostructures for electronic skin sensors with ultrabroad working range. Sci Adv, 2020, 6: eabb5367

    Article  CAS  Google Scholar 

  34. Li SN, Yu ZR, Guo BF, et al. Environmentally stable, mechanically flexible, self-adhesive, and electrically conductive Ti3C2Tx MXene hydrogels for wide-temperature strain sensing. Nano Energy, 2021, 90: 106502

    Article  CAS  Google Scholar 

  35. Zhang J, Kong N, Hegh D, et al. Freezing titanium carbide aqueous dispersions for ultra-long-term storage. ACS Appl Mater Interfaces, 2020, 12: 34032–34040

    Article  CAS  Google Scholar 

  36. Zhang CJ, Pinilla S, McEvoy N, et al. Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem Mater, 2017, 29: 4848–4856

    Article  CAS  Google Scholar 

  37. Krecker MC, Bukharina D, Hatter CB, et al. Bioencapsulated MXene flakes for enhanced stability and composite precursors. Adv Funct Mater, 2020, 30: 2004554

    Article  CAS  Google Scholar 

  38. Zhao X, Vashisth A, Prehn E, et al. Antioxidants unlock shelf-stable (MXene) nanosheet dispersions. Matter, 2019, 1: 513–526

    Article  Google Scholar 

  39. Wu CW, Unnikrishnan B, Chen IWP, et al. Excellent oxidation resistive MXene aqueous ink for micro-supercapacitor application. Energy Storage Mater, 2020, 25: 563–571

    Article  Google Scholar 

  40. Kim J, Yoon Y, Kim SK, et al. Chemically stabilized and functionalized 2D-MXene with deep eutectic solvents as versatile dispersion medium. Adv Funct Mater, 2021, 31: 2008722

    Article  CAS  Google Scholar 

  41. Yin J, Han Q, Zhang J, et al. MXene-based hydrogels endow polyetheretherketone with effective osteogenicity and combined treatment of osteosarcoma and bacterial infection. ACS Appl Mater Interfaces, 2020, 12: 45891–45903

    Article  CAS  Google Scholar 

  42. Wang Q, Pan X, Wang X, et al. Spider web-inspired ultra-stable 3D Ti3C2Tx (MXene) hydrogels constructed by temporary ultrasonic alignment and permanent in-situ self-assembly fixation. Compos Part B-Eng, 2020, 197: 108187

    Article  CAS  Google Scholar 

  43. Lotfi R, Naguib M, Yilmaz DE, et al. A comparative study on the oxidation of two-dimensional Ti3C2 MXene structures in different environments. J Mater Chem A, 2018, 6: 12733–12743

    Article  CAS  Google Scholar 

  44. Sun X, Ye L, Liang H. Extremely stretchable and tough hybrid hydrogels based on gelatin, κ-carrageenan and polyacrylamide. Soft Matter, 2021, 17: 9708–9715

    Article  CAS  Google Scholar 

  45. Chen S, Dong Y, Ma S, et al. Superstretching MXene composite hydrogel as a bidirectional stress response thixotropic sensor. ACS Appl Mater Interfaces, 2021, 13: 13629–13636

    Article  CAS  Google Scholar 

  46. Ge G, Zhang YZ, Zhang W, et al. Ti3C2Tx MXene-activated fast gelation of stretchable and self-healing hydrogels: A molecular approach. ACS Nano, 2021, 15: 2698–2706

    Article  CAS  Google Scholar 

  47. Lei H, Dong L, Li Y, et al. Stretchable hydrogels with low hysteresis and anti-fatigue fracture based on polyprotein cross-linkers. Nat Commun, 2020, 11: 4032

    Article  CAS  Google Scholar 

  48. Meng X, Qiao Y, Do C, et al. Hysteresis-free nanoparticle-reinforced hydrogels. Adv Mater, 2022, 34: 2108243

    Article  CAS  Google Scholar 

  49. Yang J, Bai R, Chen B, et al. Hydrogel adhesion: A supramolecular synergy of chemistry, topology, and mechanics. Adv Funct Mater, 2020, 30: 1901693

    Article  CAS  Google Scholar 

  50. Zhang Q, Liu X, Duan L, et al. Ultra-stretchable wearable strain sensors based on skin-inspired adhesive, tough and conductive hydrogels. Chem Eng J, 2019, 365: 10–19

    Article  CAS  Google Scholar 

  51. Qin Z, Dong D, Yao M, et al. Freezing-tolerant supramolecular organohydrogel with high toughness, thermoplasticity, and healable and adhesive properties. ACS Appl Mater Interfaces, 2019, 11: 21184–21193

    Article  CAS  Google Scholar 

  52. Xu J, Wang G, Wu Y, et al. Ultrastretchable wearable strain and pressure sensors based on adhesive, tough, and self-healing hydrogels for human motion monitoring. ACS Appl Mater Interfaces, 2019, 11: 25613–25623

    Article  CAS  Google Scholar 

  53. Lu X, Si Y, Zhang S, et al. In situ synthesis of mechanically robust, transparent nanofiber-reinforced hydrogels for highly sensitive multiple sensing. Adv Funct Mater, 2021, 31: 2103117

    Article  CAS  Google Scholar 

  54. Feng Y, Liu H, Zhu W, et al. Muscle-inspired MXene conductive hydrogels with anisotropy and low-temperature tolerance for wearable flexible sensors and arrays. Adv Funct Mater, 2021, 31: 2105264

    Article  CAS  Google Scholar 

  55. Wei Y, Xiang L, Ou H, et al. MXene-based conductive organohydrogels with long-term environmental stability and multifunctionality. Adv Funct Mater, 2020, 30: 2005135

    Article  CAS  Google Scholar 

  56. Liang Y, Wu Z, Wei Y, et al. Self-healing, self-adhesive and stable organohydrogel-based stretchable oxygen sensor with high performance at room temperature. Nano-Micro Lett, 2022, 14: 1–9

    Article  Google Scholar 

  57. Wu Z, Rong L, Yang J, et al. Ion-conductive hydrogel-based stretchable, self-healing, and transparent NO2 sensor with high sensitivity and selectivity at room temperature. Small, 2021, 17: 2104997

    Article  CAS  Google Scholar 

  58. Wu Z, Ding H, Tao K, et al. Ultrasensitive, stretchable, and fast-response temperature sensors based on hydrogel films for wearable applications. ACS Appl Mater Interfaces, 2021, 13: 21854–21864

    Article  CAS  Google Scholar 

  59. Li Y, Hu C, Lan J, et al. Hydrogel-based temperature sensor with water retention, frost resistance and remoldability. Polymer, 2020, 186: 122027

    Article  CAS  Google Scholar 

  60. Honda W, Harada S, Ishida S, et al. High-performance, mechanically flexible, and vertically integrated 3D carbon nanotube and InGaZnO complementary circuits with a temperature sensor. Adv Mater, 2015, 27: 4674–4680

    Article  CAS  Google Scholar 

  61. He W, Li G, Zhang S, et al. Polypyrrole/silver coaxial nanowire aerosponges for temperature-independent stress sensing and stress-triggered joule heating. ACS Nano, 2015, 9: 4244–4251

    Article  CAS  Google Scholar 

  62. Ge G, Lu Y, Qu X, et al. Muscle-inspired self-healing hydrogels for strain and temperature sensor. ACS Nano, 2020, 14: 218–228

    Article  CAS  Google Scholar 

  63. Lin M, Zheng Z, Yang L, et al. A high-performance, sensitive, wearable multifunctional sensor based on rubber/CNT for human motion and skin temperature detection. Adv Mater, 2022, 34: 2107309

    Article  CAS  Google Scholar 

  64. Wu J, Han S, Yang T, et al. Highly stretchable and transparent thermistor based on self-healing double network hydrogel. ACS Appl Mater Interfaces, 2018, 10: 19097–19105

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22102139, 21872119, and 22072127), the Natural Science Foundation of Hebei Province (B2021203001 and B2021203016), the Science and Technology Project of Hebei Education Department (ZD2022147), and the Special Project for Local Science and Technology Development Guided by the Central Government of China (216Z1301G and 226Z1401G).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Wang X, Jiao T, and Qin Z designed the project and performed the experiments. Li N, Yin J, Wang X, and Xu L characterized the materials and discussed the results of the experiments. All the authors commented on the final paper.

Corresponding authors

Correspondence to Tifeng Jiao  (焦体峰) or Zhihui Qin  (秦志辉).

Additional information

Conflict of interest The authors declare that they have no conflicts of interest.

Supplementary information Supporting data are available in the online version of the paper.

Xinliang Wang is a graduate student in Prof. Jiao’s group at the School of Environmental and Chemical Engineering, Yanshan University. His current research interest is the preparation of MXene-based composite hydrogels and their sensing properties as wearable devices.

Tifeng Jiao received his PhD (2006) degree in physical chemistry from the Institute of Chemistry, Chinese Academy of Sciences (CAS). He was a postdoctoral fellow of Centre National de la Recherche Scientifique with associate Prof. Girard-Egrot (Université Claude Bernard Lyon 1, France). Currently, he is a full-time professor and vice director of the School of Environmental and Chemical Engineering, Yanshan University. His current research interests include the synthesis of self-assembled nanostructured materials and nanocomposites and their related properties.

Zhihui Qin received his BSc (2014) and PhD (2020) degrees from Inner Mongolia University of Science & Technology and Tianjin University, respectively. He joined the School of Environmental and Chemical Engineering, Yanshan University, in 2020, and he became an associate professor in 2022. His research interest mainly focuses on the design of functional soft materials, including hydrogels, elastomers, and ionogels, and their related applications in flexible electronics.

Supplementary Information

40843_2022_2105_MOESM1_ESM.pdf

Interface interaction-mediated design of tough and conductive MXene-composited polymer hydrogel with high stretchability and low hysteresis for high-performance multiple sensing

Supplementary material, approximately 2.54 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Li, N., Yin, J. et al. Interface interaction-mediated design of tough and conductive MXene-composited polymer hydrogel with high stretchability and low hysteresis for high-performance multiple sensing. Sci. China Mater. 66, 272–283 (2023). https://doi.org/10.1007/s40843-022-2105-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2105-6

Keywords

Navigation