Skip to main content

Advertisement

Log in

Reduction Behavior and Direct Reduction Kinetics of Red Mud-Biomass Composite Pellets

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

A large amount of red mud is discharged in the aluminum oxide production process, which contains a variety of valuable metals and is considered as a secondary resource. In order to reveal the mechanism of red mud carbon thermal reduction process, isothermal reduction experiments on carbon-bearing pellets of red mud were investigated with biomass carbon as a reducing agent. In this study, the reduction temperatures were conducted using a microwave stove in the temperature range from 850 to 1250 ℃, and the C/O molar ratio was 1.1. The results show that the reduction process of red mud is governed by a carbon gasification reaction, and the apparent activation energy is 88.44 kJ/mol. The optimum reduction process conditions were established to be 1150 ℃ for 13 min.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Khairul MA, Zanganeh J, Moghtaderi B (2019) The composition, recycling and utilisation of Bayer red mud. Resour Conserv Recycl 141:483–498. https://doi.org/10.1016/j.resconrec.2018.11.00

    Article  Google Scholar 

  2. Guo YH, Gao JJ, Xu HJ et al (2013) Nuggets production by direct reduction of high iron red mud. J Iron Steel Res Int 20:24–27. https://doi.org/10.1016/S1006-706X(13)60092-8

    Article  CAS  Google Scholar 

  3. Patel S, Pal BK (2015) Current status of an industrial waste: red mud an overview. Int J Latest Technol Eng Manage Appl Sci 4:16

    Google Scholar 

  4. Sutar H (2014) Progress of red mud utilization: an overview. Am Chem Sci J 4:255–279

    Article  Google Scholar 

  5. Bhat AH, Banthia AK (2007) Improvement of the red mud polymer-matrix composites by organophillization of red mud. Adv Mater Res 29–30:333–336. https://doi.org/10.4028/www.scientific.net/amr.29-30.333

    Article  Google Scholar 

  6. Novais RM, Carvalheiras J, Seabra MP et al (2018) Innovative application for bauxite residue: red mud-based inorganic polymer spheres as pH regulators. J Hazard Mater 358:69–81. https://doi.org/10.1016/j.jhazmat.2018.06.047

    Article  CAS  Google Scholar 

  7. Zhang X, Zhou K, Lei Q et al (2019) selective removal of iron from acid leachate of red mud by aliquat 336. JOM 71:4608–4615. https://doi.org/10.1007/s11837-019-03801-4

    Article  CAS  Google Scholar 

  8. Klauber C, Gräfe M, Power G (2011) Bauxite residue issues: II. options for residue utilization. Hydrometallurgy 108:11–32. https://doi.org/10.1016/j.hydromet.2011.02.007

    Article  CAS  Google Scholar 

  9. Xb LI, Xiao W, Liu W et al (2009) Recovery of alumina and ferric oxide from Bayer red mud rich in iron by reduction sintering. Trans Nonferrous Met Soc China 19:1342–1347. https://doi.org/10.1016/S1003-6326(08)60447-1

    Article  CAS  Google Scholar 

  10. Kang SP, Kwon SJ (2017) Effects of red mud and alkali-activated slag cement on efflorescence in cement mortar. Constr Build Mater 133:459–467. https://doi.org/10.1016/j.conbuildmat.2016.12.123

    Article  CAS  Google Scholar 

  11. Mukiza E, Zhang LL, Liu X, Zhang N (2019) Utilization of red mud in road base and subgrade materials: a review. Resour Conserv Recycl 141:187–199. https://doi.org/10.1016/j.resconrec.2018.10.031

    Article  Google Scholar 

  12. Tsakiridis PE, Agatzini-Leonardou S, Oustadakis P (2004) Red mud addition in the raw meal for the production of Portland cement clinker. J Hazard Mater 116:103–110. https://doi.org/10.1016/j.jhazmat.2004.08.002

    Article  CAS  Google Scholar 

  13. Tor A, Danaoglu N, Arslan G, Cengeloglu Y (2009) Removal of fluoride from water by using granular red mud: batch and column studies. J Hazard Mater 164:271–278. https://doi.org/10.1016/j.jhazmat.2008.08.011

    Article  CAS  Google Scholar 

  14. Mymrin V, Alekseev K, Fortini OM et al (2017) Environmentally clean materials from hazardous red mud, ground cooled ferrous slag and lime production waste. J Clean Prod 161:376–381. https://doi.org/10.1016/j.jclepro.2017.05.109

    Article  CAS  Google Scholar 

  15. Wang W, Pranolo Y, Cheng CY (2013) Recovery of scandium from synthetic red mud leach solutions by solvent extraction with D2EHPA. Sep Purif Technol 108:96–102. https://doi.org/10.1016/j.seppur.2013.02.001

    Article  CAS  Google Scholar 

  16. Abhilash SS, Sinha MK, Pandey BD (2014) Extraction of lanthanum and cerium from Indian red mud. Int J Miner Process 127:70–73. https://doi.org/10.1016/j.minpro.2013.12.009

    Article  CAS  Google Scholar 

  17. Wang S, Ang HM, Tadé MO (2008) Novel applications of red mud as coagulant, adsorbent and catalyst for environmentally benign processes. Chemosphere 72:1621–1635. https://doi.org/10.1016/j.chemosphere.2008.05.013

    Article  CAS  Google Scholar 

  18. Zhang T, Wang K, Liu Y, Lyu G, Li X, Chen X (2020) A review of comprehensive utilization of high-iron red mud of China. Light metals 2020. Springer, Cham, pp 65–71. https://doi.org/10.1007/978-3-030-36408-3_10

    Chapter  Google Scholar 

  19. Rai S, Nimje MT, Chaddha MJ et al (2019) Recovery of iron from bauxite residue using advanced separation techniques. Miner Eng 134:222–231. https://doi.org/10.1016/j.mineng.2019.02.018

    Article  CAS  Google Scholar 

  20. Liu Y, Naidu R (2014) Hidden values in bauxite residue (red mud): recovery of metals. Waste Manage 34:2662–2673. https://doi.org/10.1016/j.wasman.2014.09.003

    Article  CAS  Google Scholar 

  21. Yang Y, Wang X, Wang M et al (2016) Iron recovery from the leached solution of red mud through the application of oxalic acid. Int J Miner Process 157:145–151. https://doi.org/10.1016/j.minpro.2016.11.001

    Article  CAS  Google Scholar 

  22. Pepper RA, Couperthwaite SJ, Millar GJ (2016) Comprehensive examination of acid leaching behaviour of mineral phases from red mud: recovery of Fe, Al, Ti, and Si. Miner Eng 99:8–18. https://doi.org/10.1016/j.mineng.2016.09.012

    Article  CAS  Google Scholar 

  23. Kaußen F, Friedrich B (2015) Reductive smelting of red mud for iron recovery. Chem-Ing-Tech 87:1535–1542. https://doi.org/10.1002/cite.201500067

    Article  CAS  Google Scholar 

  24. Jayasankar K, Ray PK, Chaubey AK et al (2012) Production of pig iron from red mud waste fines using thermal plasma technology. Int J Miner Metall Mater 19:679–684. https://doi.org/10.1007/s12613-012-0613-3

    Article  CAS  Google Scholar 

  25. Chun TJ, Zhu DQ, Pan J, He Z (2014) Preparation of metallic iron powder from red mud by sodium salt roasting and magnetic separation. Can Metall Q 53:183–189. https://doi.org/10.1179/1879139513Y.0000000114

    Article  CAS  Google Scholar 

  26. Fan DC, Ni W, Yan AY et al (2015) Orthogonal experiments on direct reduction of carbon-bearing pellets of bayer red mud. J Iron Steel Res Int 22:686–693. https://doi.org/10.1016/S1006-706X(15)30058-3

    Article  Google Scholar 

  27. Li G, Liu M, Rao M et al (2014) Stepwise extraction of valuable components from red mud based on reductive roasting with sodium salts. J Hazard Mater 280:774–780. https://doi.org/10.1016/j.jhazmat.2014.09.005

    Article  CAS  Google Scholar 

  28. Zhu DQ, Chun TJ, Pan J, He Z (2012) Recovery of iron from high-iron red mud by reduction roasting with adding sodium salt. J Iron Steel Res Int 19:1–5. https://doi.org/10.1016/S1006-706X(12)60131-9

    Article  Google Scholar 

  29. Wang R, Liu ZG, Chu MS et al (2018) Modeling assessment of recovering iron from red mud by direct reduction: magnetic separation based on response surface methodology. J Iron Steel Res Int 25:497–505. https://doi.org/10.1007/s42243-018-0063-x

    Article  Google Scholar 

  30. Hou XW, Wu YM, Huang DG et al (2015) Study on recovering iron from Shandong red mud based on gas reduction reaction. Adv Mater Res 1092–1093:1041–1045. https://doi.org/10.4028/www.scientific.net/amr.1092-1093.1041

    Article  Google Scholar 

  31. Jozwiak WK, Kaczmarek E, Maniecki TP et al (2007) Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres. Appl Catal A 326:17–27. https://doi.org/10.1016/j.apcata.2007.03.021

    Article  CAS  Google Scholar 

  32. Matsui Y, Sawayama M, Kasai A et al (2003) Reduction behavior of carbon composite iron ore hot briquette in shaft furnace and scope on blast furnace performance reinforcement. ISIJ Int 43:1904–1912. https://doi.org/10.2355/isijinternational.43.1904

    Article  CAS  Google Scholar 

  33. Fruehan RJ (1977) The rate of reduction of iron oxides by carbon. Metall Trans B 8:279–286. https://doi.org/10.1007/BF02657657

    Article  Google Scholar 

  34. Tiwari P, Bandyopadhyay D, Ghosh A (1992) Kinetics of gasification of carbon and carbothermic reduction of iron oxide. Ironmak Steelmak 19:464–468

    CAS  Google Scholar 

  35. Wang Q, Yang ZX, Tian JM, Li W, Sun J (1997) Mechanisms of reduction in iron ore-coal composite pellet. Ironmak Steelmak 24:457–460

    Google Scholar 

  36. Ginstling AM, Brounshtein BI (1950) Concerning the diffusion kinetics of reactions in spherical particles. J Appl Chem USSR 23:1327–1338

    CAS  Google Scholar 

  37. Prakash S, Ray HS (1990) Prediction of reduction kinetics of iron ore under fluctuating temperature conditions. ISIJ Int 30:183–191. https://doi.org/10.2355/isijinternational.30.183

    Article  CAS  Google Scholar 

  38. Rao YK (1971) The kinetics of reduction of hematite by carbon. Metall Trans 2:1439–1447. https://doi.org/10.1007/BF02913373

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support of this project is provided by the National Key R & D Program of China (Grant NO. 2017YFC0703100)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuai Li.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

The contributing editor for this article was Veena Sahajwalla.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Kang, Z., Liu, W. et al. Reduction Behavior and Direct Reduction Kinetics of Red Mud-Biomass Composite Pellets. J. Sustain. Metall. 7, 126–135 (2021). https://doi.org/10.1007/s40831-020-00326-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-020-00326-y

Keywords

Navigation