Skip to main content
Log in

Leaching of Metals from Incineration Bottom Ash Using Organic Acid

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

The municipal solid waste incineration bottom ash (IBA) is increasingly used as a secondary resource for civil engineering and various other applications. IBA contains various metals. The presence of these metals may limit the use of IBA as a secondary resource. This can be overcome by removing metals from IBA. This study focused on determination of metal contents of IBA and leaching of these metals. The results show that calcium (Ca), iron (Fe), aluminum (Al), silicon (Si), and sodium (Na) are the major metals present in IBA. Many other metals ranging from magnesium (Mg) to mercury (Hg) were also present in varying quantities. In the present study, four organic acids, namely, citric, malic, oxalic, and gluconic acids have been used to compare the metal leaching from IBA. The citric acid was found to be the most effective leaching agent. Various process parameters for metal leaching were optimized. It was found that the maximum metal leaching was achieved in 48 h. The 1 M citric acid, 100 mL working volume, 150 rpm, and 30 °C were the optimal conditions to leach 100 wt% Si, Na, Au, Sb, respectively. Around 99 wt% Mg, 95 wt% K, 93 wt% Cd, 88 wt% Al, 84 wt% Ca, 80 wt% Fe, 79 wt% Sr, 77 wt% Pb, Zn, As respectively, 67 wt% Cu, V, Ag respectively, 66 wt% Mn, 64 wt% Co, 56 wt% Cr, 43 wt% Ni, Sn respectively, 40 wt% Se, 21 wt% Ba, 10 wt% Hg were leached using citric acid at optimal conditions. The leaching efficiency decreased with increasing pulp density. An optimal pulp density for metal leaching was observed at 1% (w/v). The method described in the present study provides an alternative environmentally friendly process to remove metals from IBA. This will facilitate the recycling of metal-free IBA for geotechnical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yang E, Liu Y, Chen Z (2015) Environmental Sustainability through recycling incineration bottom ash for the production of autoclaved aerated concrete. Key Eng Mater 650:51–70

    Article  Google Scholar 

  2. Xu T, Ting Y (2004) Optimisation on bioleaching of incinerator fly ash by Aspergillus niger-use of central composite design. Enzym Microb Technol 35:444–454

    Article  CAS  Google Scholar 

  3. Hong K, Tokunaga S, Ishigami Y, Kajuichi T (2000) Extraction of heavy metals from MSW incinerator fly ash using saponins. Chemosphere 41:345–352

    Article  CAS  Google Scholar 

  4. Song Y, Li B, Yang E, Liu Y, Tian D (2015) Feasibility study on utilization of municipal solid waste incineration bottom ash as aerating agent for the production of autoclaved aerated concrete. Cement Concr Compos 56:51–58

    Article  CAS  Google Scholar 

  5. Song Y, Li B, Yang E, Liu Y, Chen Z (2016) Gas generation from incinerator bottom ash: potential aerating agent for lightweight concrete production. J Mater Civ Eng 28(7):04016030

    Article  Google Scholar 

  6. Zhang H, He P, Shao L, Li X (2008) Leaching behaviour of heavy metals from municipal solid waste incineration bottom ash and its geochemical modelling. Mater Cycles Waste Manag 10:7–13

    Article  CAS  Google Scholar 

  7. Ferreira C, Ribeiro A, Ottosen L (2003) Possible applications for municipal solid waste fly ash. J Hazard Mater 96:201–216

    Article  CAS  Google Scholar 

  8. Muchova L, Rem P (2007) Wet or dry separation; management of bottom ash in Europe. Waste Manag World 11:46–49

    Google Scholar 

  9. Chimenos J, Segarra M, Fernandez M, Espiell F (1999) Characterization of the bottom ash in municipal solid waste incinerator. J Hazard Mater 64:211–222

    Article  CAS  Google Scholar 

  10. Santos R, Mertens G, Salman M, Cizer O, Gerven T (2013) Comparative study of ageing, heat treatment and accelerated carbonation for stabilization of municipal solid waste incineration bottom ash in view of reducing regulated heavy metal/metalloid leaching. J Environ Manag 128:807–821

    Article  CAS  Google Scholar 

  11. Sloot V, Kosson H, Hjelmar D (2001) Characteristics, treatment and utilization of residues from municipal waste incineration. Waste Manag 21:753–765

    Article  Google Scholar 

  12. Sabbas T, Polettini A, Pomi R, Astrup T, Hjelmar O, Mostbauer P et al (2003) Management of municipal solid waste residues. Waste Manag 23:61–88

    Article  CAS  Google Scholar 

  13. Schneider J, Vehlow J, Vogg H (1994) Improving the MSWI bottom ash quality by simple in-plant measures. In: Goumans JJJM, van der Sloot HA, Aalbers ThG (eds) Environmental aspects of construction with waste materials, studies in environmental sciences 60. Elsevier, Amsterdam, pp 605–620

    Google Scholar 

  14. Gerven T, Keer E, Arickx S, Jaspers M, Wauters G, Vandecasteele C (2005) Carbonation of MSWI-bottom ash to decrease heavy metal leaching, in view of recycling. Waste Manag 25:291–300

    Article  Google Scholar 

  15. Arickx S, Gerven T, Vandecasteele C (2006) Accelerated carbonation for treatment of MSWI bottom ash. J Hazard Mater 137:235–243

    Article  CAS  Google Scholar 

  16. Gerven T, Cooreman H, Imbrechts K, Hindrix K, Vandecasteele C (2007) Extraction of heavy metals from municipal solid waste incinerator (MSWI) bottom ash with organic solutions. J Hazard Mater 140:376–381

    Article  Google Scholar 

  17. Quek A, Xu W, Guo L, Wu D (2016) Heavy metal removal from incineration bottom ash through washing with rainwater and seawater. Int J Waste Resour 6:1–9

    Article  Google Scholar 

  18. Agcasulu I, Akcil A (2017) Metal recovery from bottom ash of an incineration plant: laboratory reactor tests. Miner Process Extr Metall Rev 38:199–206

    Article  CAS  Google Scholar 

  19. Arickx S, Gerven T, Knaepkens T et al (2007) Influence of treatment techniques on Cu leaching and different organic fractions in MSWI bottom ash leachate. Waste Manag 27:1422–1427

    Article  CAS  Google Scholar 

  20. Hong K, Tokunaga S, Kajiuchi T (2000) Extraction of heavy metals from MSW incinerator fly ashes by chelating agents. J Hazard Mater 75:57–73

    Article  CAS  Google Scholar 

  21. Bosshard P, Bachofen R, Brandl H (1996) Metal leaching of fly ash from municipal waste incineration by Aspergillus niger. Environ Sci Technol 30:3066–3070

    Article  CAS  Google Scholar 

  22. Ishigaki T, Nakanishi A, Tateda M, Ike M, Fujita M (2005) Bioleaching of metal from municipal waste incineration fly ash using a mixed culture of sulfur-oxidizing and iron-oxidizing bacteria. Chemosphere 60:1087–1094

    Article  CAS  Google Scholar 

  23. Wu H, Ting Y (2006) Metal extraction from municipal solid waste (MSW) incinerator fly ash-Chemical leaching and fungal bioleaching. Enzym Microb Technol 38:839–847

    Article  CAS  Google Scholar 

  24. Wang Q, Yang J, Wang Q, Wu T (2009) Effects of water-washing pretreatment on bioleaching of heavy metals from municipal solid waste incinerator fly ash. J Hazard Mater 162:812–818

    Article  CAS  Google Scholar 

  25. Ure A (1995) Heavy metals in soils. Blackie Academic and Professional, London, pp 58–102

    Book  Google Scholar 

  26. Jadhav U, Hocheng H (2015) Analysis of metal bioleaching from thermal power plant fly ash by Aspergillus niger 34770 culture supernatant and reduction of phytotoxicity during the process. Appl Biochem Biotechnol 175:870–881

    Article  CAS  Google Scholar 

  27. Gau S, Jeng W (1998) Influence of ligands on metals leachability from landfilling bottom ashes. J Hazard Mater 58:59–71

    Article  CAS  Google Scholar 

  28. Muchova L, Bakker E, Rem P (2009) Precious metals in municipal solid waste incineration bottom ash. Water Air Soil Pollut 9:107–116

    Article  CAS  Google Scholar 

  29. Brombacher C, Bachofen R, Brandl H (1998) Development of a laboratory-scale leaching plant for metal extraction from fly ash by Thiobacillus strains. Appl Environ Microbiol 64:1237–1241

    CAS  Google Scholar 

  30. Jung C, Matsuto T, Tanaka N et al (2004) Metal distribution in incineration residues of municipal solid waste (MSW) in Japan. Waste Manag 24:381–391

    Article  CAS  Google Scholar 

  31. Bruder-Hubscher V, Lagarde F, Leroy M et al (2002) Application of a sequential extraction procedure to study the release of elements from municipal solid waste incineration bottom ash. Anal Chim Acta 451:285–295

    Article  CAS  Google Scholar 

  32. Feng S, Wang X, Wei G, Peng P, Yang Y, Cao Z (2007) Leachates of municipal solid waste incineration bottom ash from Macao: heavy metal concentrations and genotoxicity. Chemosphere 67:1133–1137

    Article  CAS  Google Scholar 

  33. Huang K, Inoue K, Harada H, Kawakita H, Ohto K (2011) Leaching of heavy metals by citric acid from fly ash generated in municipal waste incineration plants. J Mater Cycles Waste Manag 13:118–126

    Article  CAS  Google Scholar 

  34. Goyne W, Brantley L, Chorover J (2010) Rare earth element release from phosphate minerals in the presence of organic acids. Chem Geol 278:1–14

    Article  CAS  Google Scholar 

  35. Saidan M, Brown B, Valix M (2012) Leaching of electronic waste using biometabolised acids. Chin J Chem Eng 20:530–534

    Article  CAS  Google Scholar 

  36. Steer J, Griffiths A (2013) Investigation of carboxylic acids and non-aqueous solvents for the selective leaching of zinc from blast furnace dust slurry. Hydrometallurgy 140:34–41

    Article  CAS  Google Scholar 

  37. Li P, Zeng G, Xu W, Zhang C, Jiang M (2010) Effects of organic acids on zinc and lead leaching from contaminated sediments. China Environ Sci 30:1235–1240

    Article  Google Scholar 

  38. Saito C, Okada H, Titus M, Yoshioka T, Mizoguchi T (2007) Leaching of heavy metals from fly ash generated from gasification and melting furnace for municipal solid wastes by organic acids. Jpn Soc Waste Manag Expert 18:157–166

    Article  CAS  Google Scholar 

  39. Li L, Ge J, Wu F, Chen R, Chen S, Wu B (2010) Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant. J Hazard Mater 176:288–293

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the Environment Technology Research Program (ETRP), the National Environment Agency, Singapore (ETRP Nos. 1301 104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umesh U. Jadhav.

Additional information

The contributing editor for this article was D. Panias.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jadhav, U.U., Biswal, B.K., Chen, Z. et al. Leaching of Metals from Incineration Bottom Ash Using Organic Acid. J. Sustain. Metall. 4, 115–125 (2018). https://doi.org/10.1007/s40831-018-0161-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-018-0161-9

Keywords

Navigation