Skip to main content
Log in

Impact of Different Synthesis Methods on the Low-Temperature Deactivation of Cu/SAPO-34 for NH3-SCR Reaction

  • Published:
Emission Control Science and Technology Aims and scope Submit manuscript

Abstract

SAPO-34 were synthesized using three structure-directing agents (SDAs), i.e., tetraethylammonium hydroxide (TEAOH), triethylamine (TEA), and morpholine (MO). These SAPO-34 supports were used to prepare Cu/SAPO-34 catalysts via two different Cu-exchange methods: incipient wetness impregnation (IWI) and solid-state ion exchange (SSIE). The catalytic performance of Cu/SAPO-34(TEAOH, TEA, MO) catalysts prepared with IWI and SSIE before and after exposure to water vapor at 70 °C was systemically examined, and their deactivation behavior during low-temperature NH3-SCR reaction was studied. These catalysts were characterized by XRD, BET, ICP-SFMS, SEM/EDX, solid-state NMR, CO-DRIFTS, NO-DRIFTS, and H2-TPR. The various characterization findings for the Cu/SAPO-34 catalysts suggest that the distribution of different Cu2+ species and the mobility of Cu2+ in chabazite (CHA) structure are important for the low-temperature deactivation and regeneration behaviors of the Cu/SAPO-34(TEAOH, TEA, MO)-IWI and -SSIE during the NH3-SCR reaction. Thus, it has been determined that the choice of SDA and Cu-exchange method is vital to design of an efficient Cu/SAPO-34 catalyst that is highly active during a NH3-SCR reaction and has a high tolerance for the low-temperature deactivation caused by exposure to water vapor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fickel, D.W., D’Addio, E., Lauterbach, J.A., Lobo, R.F.: The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites. Appl. Catal. B Environ. 102(3-4), 441–448 (2011)

    Article  Google Scholar 

  2. Leistner, K., Mihai, O., Wijayanti, K., Kumar, A., Kamasamudram, K., Currier, N.W., Yezerets, A., Olsson, L.: Comparison of Cu/BEA, Cu/SSZ-13 and Cu/SAPO-34 for ammonia-SCR reactions. Catal. Today. 258, 49–55 (2015)

    Article  Google Scholar 

  3. Hammershoi, P.S., Vennestrom, P.N.R., Falsig, H., Jensen, A.D., Janssens, T.V.W.: Importance of the Cu oxidation state for the SO2-poisoning of a Cu-SAPO-34 catalyst in the NH3-SCR reaction. Appl. Catal. B-Environ. 236, 377–383 (2018)

    Article  Google Scholar 

  4. Wang, D., Jangjou, Y., Liu, Y., Sharma, M.K., Luo, J.Y., Li, J.H., Kamasamudram, K., Epling, W.S.: A comparison of hydrothermal aging effects on NH3-SCR of NOx over Cu-SSZ-13 and Cu-SAPO-34 catalysts. Appl. Catal. B-Environ. 165, 438–445 (2015)

    Article  Google Scholar 

  5. Briend, M., Vomscheid, R., Peltre, M.J., Man, P.P., Barthomeuf, D.: Influence of the choice of the template on the short- and long-term stability of SAPO-34 zeolite. J. Phys. Chem. 99(20), 8270–8276 (1995)

    Article  Google Scholar 

  6. Woo, J., Leistner, K., Bernin, D., Ahari, H., Shost, M., Zammit, M., Olsson, L.: Effect of various structure directing agents (SDAs) on low-temperature deactivation of Cu/SAPO-34 during NH3-SCR reaction. Catal. Sci. Technol. 8(12), 3090–3106 (2018)

    Article  Google Scholar 

  7. Woo, J., Leistner, K., Bernin, D., Ahari, H., Shost, M., Zammit, M., Olsson, L.: Understanding the mechanism of low temperature deactivation of Cu/SAPO-34 exposed to various amount of water vapor in NH3-SCR reaction. Catal. Sci. Technol. 9(14), 3623–3636 (2019)

  8. Woo, J., Bernin, D., Ahari, H., Shost, M., Zammit, M., Olsson, L.: Regeneration of Cu/SAPO-34(MO) with H2O only: too good to be true? Catal. Sci. Technol. 10(5), 1529–1538 (2020)

    Article  Google Scholar 

  9. Woo, J., Bernin, D., Ahari, H., Shost, M., Zammit, M., Olsson, L.: Regeneration of water-deactivated Cu/SAPO-34(MO) with acids. Catal. Sci. Technol. 10(5), 1539–1550 (2020)

    Article  Google Scholar 

  10. Paolucci, C., Khurana, I., Parekh, A.A., Li, S.C., Shih, A.J., Li, H., Di Iorio, J.R., Albarracin-Caballero, J.D., Yezerets, A., Miller, J.T., Delgass, W.N., Ribeiro, F.H., Schneider, W.F., Gounder, R.: Dynamic multinuclear sites formed by mobilized copper ions in NOx selective catalytic reduction. Science. 357(6354), 898–903 (2017)

    Article  Google Scholar 

  11. Gao, F., Walter, E.D., Washton, N.M., Szanyi, J., Peden, C.H.F.: Synthesis and evaluation of Cu/SAPO-34 catalysts for NH3-SCR 2: solid-state ion exchange and one-pot synthesis. Appl. Catal. B Environ. 162, 501–514 (2015)

    Article  Google Scholar 

  12. Wang, D., Gao, F., Peden, C.H.F., Li, J., Kamasamudram, K., Epling, W.S.: Selective catalytic reduction of NOx with NH3 over a Cu-SSZ-13 catalyst prepared by a solid-state ion-exchange method. ChemCatChem. 6(6), 1579–1583 (2014)

    Article  Google Scholar 

  13. Leistner, K., Olsson, L.: Deactivation of Cu/SAPO-34 during low-temperature NH3-SCR. Appl. Catal. B Environ. 165, 192–199 (2015)

    Article  Google Scholar 

  14. Yan, C., Cheng, H., Yuan, Z., Wang, S.: The role of isolated Cu2+ location in structural stability of Cu-modified SAPO-34 in NH3-SCR of NO. Environ. Technol. 36(2), 169–177 (2015)

    Article  Google Scholar 

  15. Fan, S., Xue, J., Yu, T., Fan, D., Hao, T., Shen, M., Li, W.: The effect of synthesis methods on Cu species and active sites over Cu/SAPO-34 for NH3-SCR reaction. Catal. Sci. Technol. 3(9), 2357–2364 (2013)

    Article  Google Scholar 

  16. Wang, L., Li, W., Qi, G., Weng, D.: Location and nature of Cu species in Cu/SAPO-34 for selective catalytic reduction of NO with NH3. J. Catal. 289, 21–29 (2012)

    Article  Google Scholar 

  17. Wang, D., Zhang, L., Li, J., Kamasamudram, K., Epling, W.S.: NH3-SCR over Cu/SAPO-34 – zeolite acidity and Cu structure changes as a function of Cu loading. Catal. Today. 231, 64–74 (2014)

    Article  Google Scholar 

  18. Wang, J., Yu, T., Wang, X.Q., Qi, G.S., Xue, J.J., Shen, M.Q., Li, W.: The influence of silicon on the catalytic properties of Cu/SAPO-34 for NOx reduction by ammonia-SCR. Appl. Catal. B-Environ. 127, 137–147 (2012)

    Article  Google Scholar 

  19. Hadjiivanov, K., Dimitrov, L.: IR spectroscopy study of CO and NOx adsorption on a Cu/Zr-HMS catalyst. Microporous Mesoporous Mater. 27(1), 49–56 (1999)

    Article  Google Scholar 

  20. Hadjiivanov, K.I., Kantcheva, M.M., Klissurski, D.G.: IR study of CO adsorption on Cu-ZSM-5 and CuO/SiO2 catalysts: [sigma] and [small pi] components of the Cu+-CO bond. J. Chem. Soc. Faraday Trans. 92(22), 4595–4600 (1996)

    Article  Google Scholar 

  21. Szanyi, J., Kwak, J.H., Zhu, H., Peden, C.H.F.: Characterization of Cu-SSZ-13 NH3 SCR catalysts: an in situ FTIR study. Phys. Chem. Chem. Phys. 15(7), 2368–2380 (2013)

    Article  Google Scholar 

  22. Pieplu, T., Poignant, F., Vallet, A., Saussey, J., Lavalley, J.C., Mabilon, J.: Oxidation state of copper during the reduction of NOx with propane on H-Cu-ZSM-5 in excess oxygen. Stud. Surf. Sci. Catal. 96, 619–629 (1995)

    Article  Google Scholar 

  23. Palomino, G.T., Bordiga, S., Zecchina, A., Marra, G.L., Lamberti, C.: XRD, XAS, and IR characterization of copper-exchanged Y zeolite. J. Phys. Chem. B. 104(36), 8641–8651 (2000)

    Article  Google Scholar 

  24. Zheng, Q., Ying, L., Shouying, H., Pengzhen, C., Xinbin, M.: Clarification of copper species over Cu-SAPO-34 catalyst by DRIFTS and DFT study of CO adsorption. SCIENCE CHINA Chem. 60, 912 (2017)

    Article  Google Scholar 

  25. Hun Kwak, J., Zhu, H., Lee, J.H., Peden, C.H.F., Szanyi, J.: Two different cationic positions in Cu-SSZ-13? Chem. Commun. 48(39), 4758–4760 (2012)

    Article  Google Scholar 

  26. Beale, A.M., Gao, F., Lezcano-Gonzalez, I., Peden, C.H.F., Szanyi, J.: Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials. Chem. Soc. Rev. 44(20), 7371–7405 (2015)

    Article  Google Scholar 

  27. Akolekar, D.B., Bhargava, S.K., Foger, K.: FTIR investigations of the adsorption and disproportionation of NO on Cu-exchanged silicoaluminophosphate of type 34. J. Chem. Soc. Faraday Trans. 94(1), 155–160 (1998)

    Article  Google Scholar 

  28. Zhang, R., McEwen, J.-S., Kollár, M., Gao, F., Wang, Y., Szanyi, J., Peden, C.H.F.: NO chemisorption on Cu/SSZ-13: a comparative study from infrared spectroscopy and DFT calculations. ACS Catal. 4(11), 4093–4105 (2014)

    Article  Google Scholar 

  29. Jangjou, Y., Ali, M., Chang, Q., Wang, D., Li, J., Kumar, A., Epling, W.S.: Effect of SO2 on NH3 oxidation over a Cu-SAPO-34 SCR catalyst. Catal. Sci. Technol. 6(8), 2679–2685 (2016)

    Article  Google Scholar 

  30. Paolucci, C., Parekh, A.A., Khurana, I., Di Iorio, J.R., Li, H., Albarracin Caballero, J.D., Shih, A.J., Anggara, T., Delgass, W.N., Miller, J.T., Ribeiro, F.H., Gounder, R., Schneider, W.F.: Catalysis in a cage: condition-dependent speciation and dynamics of exchanged Cu Cations in SSZ-13 zeolites. J. Am. Chem. Soc. 138(18), 6028–6048 (2016)

    Article  Google Scholar 

  31. Berthomieu, D., Delahay, G.: Recent advances in CuI/IIY: experiments and modeling. Catal. Rev. 48(3), 269–313 (2006)

    Article  Google Scholar 

  32. Yu, T., Fan, D., Hao, T., Wang, J., Shen, M., Li, W.: The effect of various templates on the NH3-SCR activities over Cu/SAPO-34 catalysts. Chem. Eng. J. 243, 159–168 (2014)

    Article  Google Scholar 

  33. Gao, F., Walter, E.D., Washton, N.M., Szanyi, J., Peden, C.H.F.: Synthesis and evaluation of Cu-SAPO-34 catalysts for ammonia selective catalytic reduction. 1. Aqueous solution ion exchange. ACS Catal. 3(9), 2083–2093 (2013)

    Article  Google Scholar 

  34. Deka, U., Juhin, A., Eilertsen, E.A., Emerich, H., Green, M.A., Korhonen, S.T., Weckhuysen, B.M., Beale, A.M.: Confirmation of isolated Cu2+ ions in SSZ-13 zeolite as active sites in NH3-selective catalytic reduction. J. Phys. Chem. C. 116(7), 4809–4818 (2012)

    Article  Google Scholar 

  35. Wang, J., Fan, D., Yu, T., Wang, J., Hao, T., Hu, X., Shen, M., Li, W.: Improvement of low-temperature hydrothermal stability of Cu/SAPO-34 catalysts by Cu2+ species. J. Catal. 322, 84–90 (2015)

    Article  Google Scholar 

  36. Xiang, X., Wu, P., Cao, Y., Cao, L., Wang, Q., Xu, S., Tian, P., Liu, Z.: Investigation of low-temperature hydrothermal stability of Cu-SAPO-34 for selective catalytic reduction of NOx with NH3. Chin. J. Catal. 38(5), 918–927 (2017)

    Article  Google Scholar 

  37. Lomachenko, K.A., Borfecchia, E., Negri, C., Berlier, G., Lamberti, C., Beato, P., Falsig, H., Bordiga, S.: The Cu-CHA deNOx catalyst in action: temperature-dependent NH3-assisted selective catalytic reduction monitored by operando XAS and XES. J. Am. Chem. Soc. 138(37), 12025–12028 (2016)

    Article  Google Scholar 

  38. Gao, F., Mei, D., Wang, Y., Szanyi, J., Peden, C.H.F.: Selective catalytic reduction over Cu/SSZ-13: linking homo- and heterogeneous catalysis. J. Am. Chem. Soc. 139(13), 4935–4942 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the Chalmers Materials Analysis Laboratory, Chalmers University of Technology, for the use of the SEM instrument and for the support from staff. The Swedish NMR Centre is gratefully acknowledged for spectrometer time.

Funding

We gratefully acknowledge FCA USA LLC and the Swedish Research Council (642-2014-5733) for their funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louise Olsson.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 1502 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woo, J., Wang, A., Bernin, D. et al. Impact of Different Synthesis Methods on the Low-Temperature Deactivation of Cu/SAPO-34 for NH3-SCR Reaction. Emiss. Control Sci. Technol. 7, 198–209 (2021). https://doi.org/10.1007/s40825-020-00182-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40825-020-00182-y

Keywords

Navigation