Skip to main content
Log in

MHD and Thermal Radiation Flow of Graphene Casson Nanofluid Stretching/Shrinking Sheet

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

A Steady 2’ D flow of graphene-water Casson nanofluid due to a stretching/shrinking sheet is examined. The thermal radiation and heat source/sink parameters effects are considered. Utilizing similarity transformations, the nonlinear PDE’s are converted into a nonlinear ODE’s with reduced boundary conditions. Hence, the exact analytical solutions have been deduced. A theoretical result was apparatus to survey on axial and transverse velocities, temperature, reduced skin friction and local Nusselt number with suitable parameters. It is examined that when the values of thermal radiation, volume fraction, injection and Eckert number, increases then the graphene nanoparticles behave like a heater. And also they behave like cooler when the values of magnetic field, suction, primary and slip secondary Navier’s slip and heat source/sink increases. The present work containing engineering and industrial applications such as manufacturing of plastic and rubber sheets, annealing and thinning of copper wires, extrusion of polymer etc. Also, in the present analysis graphene nanoparticles can be used as a heater on increasing the solid volume fraction, injection, thermal radiation and Eckert number. On the other hand, they act as a cooler with an increase of magnetic field, suction, first velocity slip, second velocity slip and heat source/sink.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

Data Availability Statement

Data sharing is not applicable to this article.

Abbreviations

\(a_{ + }\) and \(a_{ - }\) :

Stretching and shrinking constants, respectively

\(A,B\) :

Slip factors

\(B_{0}\) :

Strength of magnetic field

\(C_{p}\) :

Specific heat

\(D_{1} ,\,D_{2} \,D_{3}\) :

Constants

\(m_{1}\) to \(m_{6}\) :

Dummy variables

\(Ec_{1} \,{\text{and}}\,Ec_{2}\) :

Eckert number for PST and PHF cases, respectively

\(f\) :

Transverse velocity

\(G\) :

Graphene

\(H_{2} O\) :

Water

\(k\) :

Thermal conductivity

\(k^{*}\) :

Mean absorption coefficient

\(L\left[ {a,b,z} \right]\) :

Laguerre polynomials

\(M\) :

Magnetic field

\(Nur_{1} \,{\text{and}}\,Nur_{2}\) :

Reduced Nusselt number for PST and PHF case, respectively

PHF :

Prescribed heat flux

\(\Pr\) :

Prandtl number

PST :

Prescribed surface temperature

\(Q_{0}\) :

Coefficient of heat source/sink

\(q_{r}\) :

Radiative heat flux

\(q_{w}\) :

Surface heat flux

\(R\) :

Thermal radiation

\(S\) :

Suction/injection parameter

\(Sr\) :

Reduced skin friction coefficient

\(T\) :

Temperature

\(u,v\) :

Velocity components in x and y directions, respectively,

\(\left( {x,y} \right)\) :

Cartesian coordinates

\(\gamma\) :

Heat source/sink parameter

\(\eta\) :

Similarity variable

\(\theta\) and \(g\) :

T profiles for PST and PHF cases respectively

\(\Lambda\) :

Casson fluid parameter

\(\lambda_{0} = 1\,{\text{and}}\, - 1\) :

Represents to stretching and shrinking sheet respectively

\(\lambda_{1} \,{\text{and}}\,\lambda_{2}\) :

1St and 2nd order velocity slips, respectively

\(\mu\) :

Effective dynamic viscosity

\(\nu\) :

Effective dynamic viscosityKinematic viscosity

\(\xi\) :

Inclined parameter of magnetic field

\(\rho\) :

Effective density

\(\left( {\rho C_{P} } \right)\) :

Heat capacitance

\(\sigma\) :

Electrical conductivity

\(\sigma^{*}\) :

Stefan-Boltzmann constant

\(\tau_{w}\) :

Skin friction

\(\phi\) :

Solid volume fraction

\(\infty\) :

Condition of ambient

\(c\) :

Critical value

\(f\) :

Base fluid

\(n\,f\) :

Nanofluid

\(s\) :

Particle

\(t\) :

Terminated value

\(w\) :

Wall surface

References

  1. Karwe, M.V. Jaluria, Y. Numerical simulation of thermal transport associated with a continuous moving flat sheet in material processing, ASME J. Heat Transfer 119 (1991).

  2. Metal, T., Gegal, S., Oh, H.: Metal forming fundamentals and applications. American society of metals, Metals Park, OH (1979)

    Google Scholar 

  3. Choi, S.U.S.: Enhancing thermal conductivity of fluids with nanoparticles. Dev. Appl. Non-Newtonian Flows 66, 99–105 (1995)

    Google Scholar 

  4. Sakiadis, B.C.: Boundary layer behaviour on continuous solid surfaces: I. Boundary layer equations for two-dimensional and axisymmetric flow. AICHE J. 7, 26–28 (1961)

    Article  Google Scholar 

  5. Sakiadis, B.C.: Boundary layer behaviour on continuous solid surfaces: II. The boundary layer on a continuous flat surface. AICHE J. 7 (1961) 221–225.

  6. Crane, L.J.: Flow past a stretching plate. Z Angrew. Math. Phys. 21, 645–647 (1990)

    Article  Google Scholar 

  7. Aly, E.H.: Existence of the multiple exact solutions for nanofluids flow over a stretching/shrinking sheet embedded in a porous medium at the presence of magnetic field with electrical conductivity and thermal radiation effects. Powder Tech. 301, 760–781 (2016)

    Article  Google Scholar 

  8. Rosca, N.C., Rosca, A.V., Aly, E.H., Pop, I.: semi-analytical solution for the flow of a nanofluid over a permeable stretching/shrinking sheet with velocity slip using Buongiorno’s mathematical model. Euro. J. Mech. B/Fluids 58, 39–49 (2016)

    Article  MathSciNet  Google Scholar 

  9. Nandy, S.K., Pop, I.: Effects of magnetic field and thermal radiation on stagnation flow and heat transfer of nanofluid over a shrinking surface. Int. Commun. Heat mass Tranf. 53, 50–55 (2014)

    Article  Google Scholar 

  10. Cortell, R.: Radiation effects for the Blasius and sakiadis flows with a convective surface boundary condition. Appl. Math. Comput. 206, 832–840 (2008)

    MathSciNet  MATH  Google Scholar 

  11. Aly, E.H., Vajravelu, K.: Exact and numerical solutions of MHD nano boundary layer flows over stretching surfaces in porous medium. Appl. Math. Comput. 232, 191–240 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Siddheshwar, P.G., Mahabaleshwar, U.S.: Effects of radiation and heat source on MHD flow of a viscoelastic liquid and heat transfer over a stretching sheet. Int. J. Non-Linear Mech. 40, 807–820 (2005)

    Article  Google Scholar 

  13. Turkyimazoglu, M.: Multiple solutions of hydro magnetic permeable flow and heat for viscoelastic fluid. J. Thermo. Heat Transfer 25, 595–605 (2011)

    Article  Google Scholar 

  14. Turkyimazoglu, M.: Heat and mass transfer of MHD second order slip flow. Comput. Fluids 71, 426–434 (2013)

    Article  MathSciNet  Google Scholar 

  15. Nandeppanavar, M.M., Vajravelu, K., Abel, M.S., Siddalingappa, M.N.: Second order slip flow and heat transfer over a stretching sheet with non-linear Navier boundary condition. Int. J. Therm. Sci. 58, 143–150 (2012)

    Article  Google Scholar 

  16. Aly, E.H., Hassan, M.A.: suction and injection analysis of MHD nano boundary-layer over a stretching surface through a porous medium with partial slip boundary condition. J. Comput. Theor. Nanosci. 11, 827–839 (2014)

    Article  Google Scholar 

  17. Raju Chakravarthala, S.K. Sandeep, N. Ali M.E. Nuhait A.O.: Heat and mass transfer in 3-D NHD Williamson-Casson fluids flow over a syretching surface with non-uniform heat source/sink. Therm. Sci. 23 (2019) 281–293.

  18. Kumaran, G., Sandeep, N., Ali, M.E.: Computational analysis of magnetohydrodynamic Casson and Maxwell flows over a stretching sheet with cross diffusion. Results Phys. 7, 147–155 (2017)

    Article  Google Scholar 

  19. Ali, M.E., Sandeep, N.: Cattaneo-Christov model for radiative heat transfer of magnetohydrodynamic Casson-ferrofluid: A numerical study. Results Phys 7, 21–30 (2017)

    Article  Google Scholar 

  20. Sandeep, N., Malvandi, A.: Enhanced heat transfer in liquid thin film flow of non-Newtonian nanofluids embedded with graphene nano particles. Adv. Powder Technol. 27, 2448–2456 (2016)

    Article  Google Scholar 

  21. Kole, M. Dey, T.: Investigation of thermal conductivity, viscosity, and electrical conductivity of graphene based nanofluids. J. Appl. Phys. 113 (2013) (084307).

  22. Ahammed, N. Asirvathama, L.G. Titus, J. Bose, J.R. wongwises, S.: Measurement of thermal conductivity of graphene-water nanofluid at below and above ambient temperatures. Int. Commun. Heat Mass Transf. 70 (2016) 66–74.

  23. Sadehinezhad, E., Mehrali, M., Saidur, R., Mehrali, M., Latibari, S.T., Akhiani, A.R., Metselaar, H.S.C.: A comprehensive review on graphene nanofluids: Recent research, development and applications. Energy Covers. Manag. 111, 466–487 (2016)

    Google Scholar 

  24. Ramon-Raygoza, E.D., Rivera-Solorio, C.I., Gimenez-Torres, E.D., Maldonado-Cortes, E.: Cardenas- Aleman, R. Cue-Sampendro.: Development of nanolubricant based on impregnated multilayer graphene for automative applications: analysis of tribological properties. Powder Tech. 302, 363–371 (2016)

    Article  Google Scholar 

  25. Ahammed, N., Asirvatham, L.G., Wongwise, S.: Effect of volume concentration and temperature on viscosity and surface tension of graphene-water nanofluid for heat transfer applications. J. Therm. Anal. Calorimetry 123, 1399–1409 (2016)

    Article  Google Scholar 

  26. Aly, E.H.: Dual exact solutions of graphene-water nanofluid flow over stretching/shrinking sheet with suction/injection and heat source/sink: critical values and regions with stability. Powder Tech. 342, 528–544 (2019)

    Article  Google Scholar 

  27. Wang, X.Q., Mujumdar, A.S.: A review on nanofluids-Part II: experiments and applications. Braz. J. Chem. Eng. 25, 631–648 (2008)

    Article  Google Scholar 

  28. Chamkha, A.J., Jena, S.K., Mahapatra, S.K.: MHD convection of nanofluids: A review. J. Nanofluids 4, 271–292 (2015)

    Article  Google Scholar 

  29. Sreedevi, P., Reddy, P.S., Chamkha, A.J.: Heat and Mass transfer analysis of nanofluid over linear and non-linear stretching surfaces with thermal radiation and chemical reaction. Powder Tech. 315, 194–204 (2017)

    Article  Google Scholar 

  30. Nayak, M.K., Akbar, N.S., Pandey, V.S., Khan, Z.H., Tripathi, D.: 3D free convective MHD flow of nanofluid over permeable linear stretching sheet with thermal radiation. Powder Tech. 315, 205–215 (2017)

    Article  Google Scholar 

  31. Hassan, M. Zeeshan, A. Majeed, A. Ellahi, R.: Particle shape effects on ferrofluids flow and heat transfer under influence of low oscillating magnetic field, J. Magn. Magn. Mater. 443 (2017) 36–44.14

  32. Das, S., Giri, A., Samanta, S., Kanagaraj, S.: Role of graphene nanofluids on heat transfer enhancement in thermopyphon. J. Sci. Adv. Mater. Devices 4, 163–169 (2019)

    Article  Google Scholar 

  33. Rueda-Garc´ıa, D. Rodr´ıguez-Laguna, M. Ch´avez-Angel, E. Dubal, D.P. Cab´an-Huertas, Z. Benages Vilau, R. G´omez-Romero, P.: From thermal to electroactive graphene nanofluids, Conference report. Energies (2019) 4545

  34. Javanmard, M. Salmani, H. Taheri, M.H. Askari, N. Kazemi, M. A.: Heat transfer of a radial, nanofluid water-graphene oxide hydro magnetic flow between coaxial pipes with a variable radius ratio. Int. J. Mech. Eng. (2019), pp 1–10

  35. Hamze, S. Newal, B. David, C. Alexandre, D. Jaafar, G. Jerome, G. Dominique, B. Florentin, M.Thierry, M. Brigitte, V. Estelle, E.: Few-Layer Graphene-Based Nanofluids with Enhanced Thermal Conductivity. Nanomaterials (2020) 12–58

  36. Divya, P. Bhanvase, A. Sonawane, H.: A Review on Graphene Derivatives-based nanofluids: investigation on properties and heat transfer characteristics. Ind. Eng. Chem. Res. (2020)

  37. Singh, S. Verma, P. Ghosh, S.K.: Numerical and experimental analysis of performance in a compact plate heat exchanger using graphene oxide/water nanofluid, Int. J. Numer. Meth. Heat Fluid Flow (2021) (in press). https://doi.org/10.1108/HFF-08-2020-0539.

  38. Taherialekouhi, R. Rasouli, S. Khosravi, A.: An experimental study on stability and thermal conductivity of water-graphene oxide/aluminium oxide nanoparticles as a cooling hybrid nanofluid. Int. J. Heat Mass Transfer 145 (2019) 118751

  39. Siddiqui, F.R. Tso, C.Y. Fu, S.C. Qiu, H.H. Chao, C.Y.H.: Evaporation and wetting behavior of silver-graphene hybrid nanofluid droplet on its porous residue surface for various mixing ratios. Int. J. Heat Mass Transfer 153 (2020) 119618

  40. Acharya, N., Mabood, F.: On the hydrothermal features of radiative Fe3O4-graphene hybrid nanofluid flow over a slippery bended surface with heat source/sink. J. Thermal Analysis Calorimetry 143, 1273–1289 (2021)

    Article  Google Scholar 

  41. Jia, Q., Muhammad, M.B., Munawwar, A.A., Mohammad, M.R., Mohamed, El-Sayed A.: Entropy Generation on MHD Casson Nanofluid Flow over a Porous Stretching/Shrinking Surface”. Entropy 4 (2016) 123

  42. Umair, K., Aurang, Z., Ishak, A.: Magnetic field effect on sisko fluid flow containing gold nanoparticles through a porous covered surface in the presence of radiation and partial slip. Mathematics 9, 921 (2021)

    Article  Google Scholar 

  43. Umair, K. Aurang, Z. Sakhinah A.B, Ishak, A.: Stagnatiom-point flow of a hybrid nanoliquid over a non-isothermal stretching/shrinking sheet with charecteristics of inertial and microstructure. Case Stud. Therm. Eng. 26 (2021) 101150

  44. Umair, K. Sardar, B. Zaib, A. Makinde, O.D. Abderrahim, W.: Numerical simulation of a nonlinear coupled differential system describing a convective flow of Casson gold-blood nanofluid through a stretched rotating rigid disk in the presence of Lorentz forces and nonlinear thermal radiation. Research article, (2020)

  45. Vishalakshi, A.B., Mahabaleshwar, U.S., Sarris, I.E.: An MHD fluid flow over a porous stretching/ shrinking sheet with slips and Mass transpiration. Micromachines 13, 116 (2022)

    Article  Google Scholar 

  46. Mahabaleshwar, U.S., Anusha, T., Sakanaka, P.H., Bhattacharyya, S.: Impact of inclined Lorentz Force and Schmidt number on chemically reactive Newtonian fluid flow on a stretching surface when Stefan blowing and thermal radiation are significant. Arab. J. Sci. Eng. (2021)

  47. Mahabaleshwar, U.S., Sneha, K.N., Huang-Nan-Huang.: An effect of MHD and radiation on CNTS-water based nanofluid due to a stretching sheet in a Newtonian fluid. Case Stud. Therm. Eng. 101462 (2021)

  48. Mahabaleshwar, U.S., Anusha, T., Hatami, M.: The MHD Newtonian hybrid nanofluid flow and mass transfer analysis due to super-linear stretching sheet embedded in porous medium. Scientific reports, (2021)

  49. Anusha, T., Huang-Nan Huang, Mahabaleshwar, U.S.: Two dimensional unsteady stagnation point flow of Casson hybrid nanofluid over a permeable flat surface and heat transfer analysis with radiation. Jour. Taiwan Inst. Chem. Eng. (2021)

  50. Sneha, K.N., Mahabaleshwar, U.S., Bennacer, R., El-Ganaoui, M.: Darcy Brinkman equations for hybrid dusty nanofluid flow with heat transfer and mass transpiration. Computation. 9, 118 (2021)

    Article  Google Scholar 

  51. Whittaker, E.T. Watson, G.N.: A Course of Modern Analysis, Cambridge, England: Cambridge UniversityPress, 4th Edition (1990)

  52. Turkyilmazoglu, M.: Multiple solutions of heat and mass transfer of MHD slip flow for the viscoelastic fluid over a stretching sheet. Int. J. Thermal Sci. 47, 2264–2276 (2011)

    Article  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Vishalakshi.

Ethics declarations

Conflict of interest

The author declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahabaleshwar, U.S., Aly, E.H. & Vishalakshi, A.B. MHD and Thermal Radiation Flow of Graphene Casson Nanofluid Stretching/Shrinking Sheet. Int. J. Appl. Comput. Math 8, 113 (2022). https://doi.org/10.1007/s40819-022-01300-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-022-01300-w

Keywords

Navigation