Skip to main content
Log in

A Weak Space-Time Formulation for the Linear Stochastic Heat Equation

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

We apply the well-known Banach–Nečas–Babuška inf–sup theory in a stochastic setting to introduce a weak space-time formulation of the linear stochastic heat equation with additive noise. We give sufficient conditions on the data and on the covariance operator associated to the driving Wiener process, in order to have existence and uniqueness of the solution. We show the relation of the obtained solution to the mild solution and to the variational solution of the same problem. The spatial regularity of the solution is also discussed. Finally, an extension to the case of linear multiplicative noise is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Babuška, I., Aziz, A.K.: Survey lectures on the mathematical foundations of the finite element method. In: The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (Proceedings of the Symposium, University of Maryland, Baltimore, Md., 1972), pp. 1–359. Academic Press, New York (1972)

  2. Babuška, I., Janik, T.: The \(h\)-\(p\) version of the finite element method for parabolic equations. I. The \(p\)-version in time. Numer. Methods Partial Differ. Equ. 5(4), 363–399 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chegini, N., Stevenson, R.: Adaptive wavelet schemes for parabolic problems: sparse matrices and numerical results. SIAM J. Numer. Anal. 49(1), 182–212 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chow, P.: Stochastic Partial Differential Equations. Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series. Chapman & Hall/CRC, Boca Raton, FL (2007)

    Google Scholar 

  5. Da Prato, G.: An Introduction to Infinite-Dimensional Analysis. Universitext. Springer, Berlin (2006)

    Book  Google Scholar 

  6. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, vol. 44. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  7. Dautray, R., Lions, J.L.: Mathematical Analysis and Numerical Methods for Science and Technology, vol. 5. Springer, Berlin (1992)

    MATH  Google Scholar 

  8. Ern, A., Guermond, J.L.: Theory and practice of finite elements. In: Applied Mathematical Sciences, vol. 159. Springer, New York (2004)

  9. Lunardi, A.: Interpolation Theory, 2nd edn. Appunti. Scuola Normale Superiore di Pisa (Nuova Serie). [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)]. Edizioni della Normale, Pisa (2009)

  10. Prévôt, C., Röckner, M.: A concise course on stochastic partial differential equations. In: Lecture Notes in Mathematics, vol. 1905. Springer, Berlin (2007)

  11. Schwab, C., Stevenson, R.: Space-time adaptive wavelet methods for parabolic evolution problems. Math. Comput. 78(267), 1293–1318 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Schwab, C., Süli, E.: Adaptive Galerkin approximation algorithms for Kolmogorov equations in infinite dimensions. Stoch. Partial Differ. Equ. Anal. Comput. 1(1), 204–239 (2013)

    MathSciNet  MATH  Google Scholar 

  13. Tantardini, F.: Quasi Optimality in the Backward Euler–Galerkin Method for Linear Parabolic Problems (2013). Tesi di dottorato, Universita’ degli Studi di Milano

  14. Urban, K., Patera, A.T.: A new error bound for reduced basis approximation of parabolic partial differential equations. C. R. Math. Acad. Sci. Paris 350(3–4), 203–207 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Yan, Y.: Semidiscrete Galerkin approximation for a linear stochastic parabolic partial differential equation driven by an additive noise. BIT 44(4), 829–847 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous referee for the constructive criticism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Molteni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larsson, S., Molteni, M. A Weak Space-Time Formulation for the Linear Stochastic Heat Equation. Int. J. Appl. Comput. Math 3, 787–806 (2017). https://doi.org/10.1007/s40819-016-0134-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40819-016-0134-2

Keywords

Mathematics Subject Classification

Navigation