Skip to main content
Log in

Triangular Neutrosophic Cognitive Map for Multistage Sequential Decision-Making Problems

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Nowadays, fuzzy cognitive maps (FCMs) are one of the most efficient artificial intelligence techniques for modeling large and complex systems. However, traditional FCMs have the limitation of not representing the indeterminacy situations presented in many decision-making problems. To overcome this limitation, neutrosophic cognitive maps (NCMs) were proposed as a new extension of traditional FCMs. Nevertheless, the way that NCMs reported in the bibliography handle the indeterminacy is still insufficient since they cannot quantify the degree of indeterminacy. Moreover, there are decision-making problems in which decisions should be considered as a sequence of decisions hardly interconnected in sequential order. This situation is presented in scenarios such as projects evaluation characterized by the existence of multiple interconnected processes (diagnosis, decision, and prediction). The lack of a suitable FCMs topology for modeling this kind of decision-making problems constitutes another challenging issue of FCMs. This paper presents a new neutrosophic cognitive map based on triangular neutrosophic numbers for multistage sequential decision-making problems (MS-TrNCM). In the proposed model, all the map’s connections are represented by triangular neutrosophic numbers, making it possible for decision makers to express their preferences considering the truth, indeterminacy, and falsity degrees. Furthermore, a new topology for representing multistage sequential processes is introduced. The suggested MS-TrNCM is applied to make diagnoses, decisions, and predictions during the evaluation of 1011 projects records from project evaluation database ”uci-gp-eval-201903051137” provided by the University of Informatics Sciences. In validation process, the superiority of the proposed MS-TrNCM over the NCMs and traditional FCMs has been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Kosko, B.: Fuzzy cognitive maps. Int. J. Man Mach. Stud. 24, 65–75 (1986). https://doi.org/10.1016/S0020-7373(86)80040-2

    Article  MATH  Google Scholar 

  2. Amirkhani, A., Papageorgiou, E.I., Mohseni, A., Mosavi, M.R.: A review of fuzzy cognitive maps in medicine: taxonomy, methods, and applications. Comput. Methods Progr. Biomed. 142, 129–145 (2017)

    Article  Google Scholar 

  3. Christoforou, A., Andreou, A.S.: A framework for static and dynamic analysis of multi-layer fuzzy cognitive maps. Neurocomputing 232, 133–145 (2017). https://doi.org/10.1016/j.neucom.2016.09.115

    Article  Google Scholar 

  4. Papageorgiou, E.I., Poczeta, K.: A two-stage model for time series prediction based on fuzzy cognitive maps and neural networks. Neurocomputing 232, 113–121 (2017)

    Article  Google Scholar 

  5. Nápoles, G., Leon Espinosa, M., Grau, I., Vanhoof, K., Bello, R.: Fuzzy Cognitive Maps Based Models for Pattern Classification: Advances and Challenges. In: Pelta, D.A., Cruz Corona, C. (eds.) Soft Computing Based Optimization and Decision Models: To Commemorate the 65th Birthday of Professor José Luis “Curro” Verdegay, pp. 83–98. Springer International Publishing, Cham (2018)

    Chapter  Google Scholar 

  6. Felix, G., Nápoles, G., Falcon, R., Froelich, W., Vanhoof, K., Bello, R.: A review on methods and software for fuzzy cognitive maps. Artif. Intell. Rev. 52, 1707–1737 (2019). https://doi.org/10.1007/s10462-017-9575-1

    Article  Google Scholar 

  7. Stylios, C.D., Bourgani, E., Georgopoulos, V.C.: Impact and Applications of Fuzzy Cognitive Map Methodologies. In: Kosheleva, O., Shary, S.P., Xiang, G., Zapatrin, R. (eds.) Beyond Traditional Probabilistic Data Processing Techniques: Interval, Fuzzy etc. Methods and Their Applications, pp. 229–246. Springer International Publishing, Cham (2020)

    Chapter  MATH  Google Scholar 

  8. Anninou, A.P., Groumpos, P.P., Panagiotis, P.: Modeling Health Diseases Using Competitive Fuzzy Cognitive Maps. In: Papadopoulos, H., Andreou, A.S., Iliadis, L., Maglogiannis, I. (eds.) Artificial Intelligence Applications and Innovations, pp. 88–95. Springer, Berlin (2013)

    Chapter  Google Scholar 

  9. Büyükavcu, A., Albayrak, Y.E., Göker, N.: A fuzzy information-based approach for breast cancer risk factors assessment. Appl. Soft Comput. 38, 437–452 (2016)

    Article  Google Scholar 

  10. Douali, N., Csaba, H., De Roo, J., Papageorgiou, E.I., Jaulent, M.-C.: Diagnosis support system based on clinical guidelines: comparison between case-based fuzzy cognitive maps and bayesian networks. Comput. Methods Progr. Biomed. 113, 133–143 (2014)

    Article  Google Scholar 

  11. Zhang, Y., Qin, J., Shi, P., Kang, Y.: High-order intuitionistic fuzzy cognitive map based on evidential reasoning theory. IEEE Trans. Fuzzy Syst. 27, 16–30 (2019)

    Article  Google Scholar 

  12. Salmeron, J.L., Palos-Sanchez, P.R.: Uncertainty propagation in fuzzy grey cognitive maps with Hebbian-like learning algorithms. IEEE Trans. Cybern. 49, 211–220 (2019)

    Article  Google Scholar 

  13. Bourgani, E., Manis, G., Stylios, C.D., Georgopoulos, V.C.: Timed-fuzzy cognitive maps: an overview. In: 2016 IEEE international conference on systems, man, and cybernetics (SMC), pp. 4483–4488. IEEE, Budapest, Hungary (2016)

  14. Nápoles, G., Mosquera, C., Falcon, R., Grau, I., Bello, R., Vanhoof, K.: Fuzzy-rough cognitive networks. Neural Netw. 97, 19–27 (2018). https://doi.org/10.1016/j.neunet.2017.08.007

    Article  Google Scholar 

  15. Wang, J., Guo, A.Q.: Ensemble interval-valued fuzzy cognitive maps. IEEE Access 6, 38356–38366 (2018)

    Article  Google Scholar 

  16. Stylios, C.D., Georgopoulos, V.C.: Fuzzy cognitive maps structure for medical decision support systems. In: Forging the New Frontiers: Fuzzy Pioneers II, pp. 151–174. Springer, Berlin (2008)

  17. Judy, M.V., Soman, G.: Parallel fuzzy cognitive map using evolutionary feature reduction for big data classification problem. In: Mandal, J.K., Sinha, D. (eds.) Social Transformation—Digital Way, pp. 226–239. Springer, Singapore (2018)

    Chapter  Google Scholar 

  18. Cogollo, J., Correa, A.: Modeling supply chain quality management using multi-layer fuzzy cognitive maps. In: 2019 IEEE international conference on fuzzy systems (FUZZ-IEEE), pp. 1–6. IEEE, New Orleans, USA (2019)

  19. Amirkhani, A., Shirzadeh, M., Papageorgiou, E.I., Mosavi, M.R.: Fuzzy Cognitive Map for Visual Servoing of Flying Robot. In: 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). pp. 1371–1376. IEEE, Vancouver, Canada (2016)

  20. Alipour, M., Hafezi, R., Papageorgiou, E., Hafezi, M., Alipour, M.: Characteristics and scenarios of solar energy development in Iran: fuzzy cognitive map-based approach. Renew. Sustain. Energy Rev. 116, 109410 (2019). https://doi.org/10.1016/j.rser.2019.109410

    Article  Google Scholar 

  21. Hajek, P., Froelich, W., Prochazka, O.: Intuitionistic fuzzy grey cognitive maps for forecasting interval-valued time series. Neurocomputing 400, 173–185 (2020)

    Article  Google Scholar 

  22. Amirkhani, A., Nasiriyan-Rad, H., Papageorgiou, E.I.: A novel fuzzy inference approach: neuro-fuzzy cognitive map. Int. J. Fuzzy Syst.. 22, 859–872 (2020)

    MATH  Google Scholar 

  23. López-Bernabé, E., Foudi, S., Galarraga, I.: Mind the map? Mapping the academic, citizen and professional stakeholder views on buildings and heating behaviour in Spain. Energy Res. Soc. Sci. 69, 101587 (2020)

    Article  Google Scholar 

  24. Irujo, J.A., Pérez-Ezcurdia, A.: Understanding top management’s decision-making on implementing project management systems—an exploratory study. Tech. Gaz. 24, 837–846 (2017)

    Google Scholar 

  25. Hafezi, M., Giffin, A., Alipour, M., Sahin, O., Stewart, R.A.: Mapping long-term coral reef ecosystems regime shifts: a small island developing state case study. Sci. Total Environ. 716, 137024 (2020)

    Article  Google Scholar 

  26. Amirkhani, A., Papageorgiou, E.I., Mosavi, M.R., Mohammadi, K.: A novel medical decision support system based on fuzzy cognitive maps enhanced by intuitive and learning capabilities for modeling uncertainty. Appl. Math. Comput. 337, 562–582 (2018)

    Google Scholar 

  27. Kandasamy, W.B.V., Smarandache, F.: Fuzzy Cognitive Maps and Neutrosophic Cognitive Maps. Xiquan, New Mexico (2003)

    MATH  Google Scholar 

  28. Smarandache, F.: A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability. American Research Press, Rehoboth (1999)

    MATH  Google Scholar 

  29. Monda, K., Pramanik, S.: A study on problems of Hijras in West Bengal based on neutrosophic cognitive maps. Neutrosophic Sets Syst. 5, 21–26 (2014)

    Google Scholar 

  30. Gaurav, Kumar, M., Bhutani, K., Aggarwal, S.: Hybrid model for medical diagnosis using Neutrosophic Cognitive Maps with Genetic Algorithms. In: 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). pp. 1–7. Istambul (2015)

  31. Betancourt-Vázquez, A., Leyva-Vázquez, M., Perez-Teruel, K.: Neutrosophic cognitive maps for modeling project portfolio interdependencies. Crit. Rev. 10, 40–44 (2015)

    Google Scholar 

  32. Bhutani, K., Kumar, M., Garg, G., Aggarwal, S.: Assessing it projects success with extended fuzzy cognitive maps & neutrosophic cognitive maps in comparison to fuzzy cognitive maps. Neutrosophic Sets Syst. 12, 9–19 (2016)

    Google Scholar 

  33. Shanmugam, S., Preethi, J.: A study of early prediction and classification of arthritis disease using soft computing techniques. Int. J. Res. Eng. Appl. Manage. 3, 35–47 (2017)

    Google Scholar 

  34. Mayorga, C., Suarez, J., De Lucas, L., Vera, C., Leyva, M.: Analysis of technological innovation contribution to gross domestic product based on neutrosophic cognitive maps and neutrosophic numbers. Neutrosophic Sets Syst. 30, 34–43 (2019)

    Google Scholar 

  35. Ramalingam, S., Govindan, K., Vasantha, W.B., Broumi, S.: An approach for study of traffic congestion problem using fuzzy cognitive maps and neutrosophic cognitive maps-the case of Indian traffic. Neutrosophic Sets Syst. 30, 273–283 (2019)

    Google Scholar 

  36. Vasantha, W.B., Kandasamy, I., Devvrat, V., Ghildiyal, S.: Study of imaginative play in children using neutrosophic cognitive maps model. Neutrosophic Sets Syst. 30, 241–252 (2019)

    Google Scholar 

  37. Deli, I., Subas, Y.: Single valued neutrosophic numbers and their applications to multicriteria decision making problem. Neutrosophic Sets Syst. 2, 1–13 (2014)

    Google Scholar 

  38. Wang, H., Smarandache, F., Zhang, Y., Sunderraman, R.: Single valued neutrosophic sets. Multispace Multistruct. 4, 410–413 (2010)

    MATH  Google Scholar 

  39. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  MATH  Google Scholar 

  40. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)

    Article  MATH  Google Scholar 

  41. Van Laarhoven, P.J.M., Pedrycz, W.: A fuzzy extension of Saaty’s priority theory. Fuzzy Sets Syst. 11, 229–241 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  42. VLi, D.-F.: A ratio ranking method of triangular intuitionistic fuzzy numbers and its application to MADM problems. Comput. Math. Appl. 60, 1557–1570 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Liu, P., Wang, Y.: Multiple attribute decision-making method based on single-valued neutrosophic normalized weighted Bonferroni mean. Neural Comput. Appl. 25, 2001–2010 (2014)

    Article  Google Scholar 

  44. Abdel-Basset, M., Mohamed, M., Hussien, A.-N., Sangaiah, A.K.: A novel group decision-making model based on triangular neutrosophic numbers. Soft. Comput. 22, 6629–6643 (2018). https://doi.org/10.1007/s00500-017-2758-5

    Article  Google Scholar 

  45. Bueno, S., Salmeron, J.L.: Benchmarking main activation functions in fuzzy cognitive maps. Expert Syst. Appl. 36, 5221–5229 (2010)

    Article  Google Scholar 

  46. Zhang, L., Chettupuzha, A.J.A., Chen, H., Wu, X., AbouRizk, S.M.: Fuzzy cognitive maps enabled root cause analysis in complex projects. Appl. Soft Comput. 57, 235–249 (2017)

    Article  Google Scholar 

  47. Project Management Institute: A Guide to the Project Management Body of Knowledge (PMBOK®Guide), 6th edn. Project Management Institute, Newtown Square (2017)

    Google Scholar 

  48. Brioso, X.: Integrating ISO 21500 guidance on project management, lean construction and PMBOK. Proc. Eng. 123, 76–84 (2015)

    Article  Google Scholar 

  49. Johnson, J.: CHAOS Report: Decision Latency Theory: It Is All About the Interval. The Standish Group, Morrisville (2018)

    Google Scholar 

  50. Project Management Institute: Capturing the Value of Project Management Through Decision Making. Project Management Institute, Morrisville (2015)

    Google Scholar 

  51. Rivero, C.C., Pérez, I., Piñero Pérez, P., Huergo, R.: Proceso de limpieza de datos en la construcción del repositorio para investigaciones en gestión de proyectos. In: Informática 2018, Cuba (2018)

  52. Martínez, L., Rodriguez, R.M., Herrera, F.: 2-Tuple Linguistic Model. In: Martínez, L., Rodriguez, R.M., Herrera, F. (eds.) The 2-tuple Linguistic Model: Computing with Words in Decision Making, pp. 23–42. Springer International Publishing, Cham (2015)

    Chapter  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elpiniki I. Papageorgiou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-subhi, S.H., Papageorgiou, E.I., Pérez, P.P. et al. Triangular Neutrosophic Cognitive Map for Multistage Sequential Decision-Making Problems. Int. J. Fuzzy Syst. 23, 657–679 (2021). https://doi.org/10.1007/s40815-020-01014-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-020-01014-5

Keywords

Navigation