Skip to main content
Log in

A Novel Intuitionistic Fuzzy Clustering Algorithm Based on Feature Selection for Multiple Object Tracking

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

In this paper, a novel intuitionistic fuzzy clustering algorithm based on feature selection (IFC-FS) for multiple object tracking is proposed. In the proposed algorithm, the neighborhood rough set is used to achieve the adaptive selection of the multiple object features of visual objects, which are applied to calculate the distance similarity measure between the objects and the observations. At the same time, in order to incorporate the local information of objects into the intuitionistic fuzzy clustering, the local information distances between objects and observations are estimated by using the optimal subpattern assignment metric based on the reference topology set, and a new intuitionistic fuzzy clustering based on maximum entropy principle is proposed by using the new similarity distance measure. Finally, the association probabilities among the objects and the observations are reconstructed by utilizing the intuitionistic fuzzy membership degrees. The experimental results show that the proposed algorithm can effectively improve the estimated accuracy and robustness of the association probabilities between the objects and the observations, and have the ability to track accurately multiple objects in the complex background and long-time occlusion environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kulbacki, M., Segen, J., Wojciechowski, S., et al.: Intelligent video monitoring system with the functionality of online recognition of people’s behavior and interactions between people. In: Asian Conference on Intelligent Information and Database Systems, 2018, pp. 492–501

  2. Cermeño, E., Pérez, A., Sigüenza, J.A.: Intelligent video surveillance beyond robust background modeling. Expert Syst. Appl. 91(1), 138–149 (2018)

    Article  Google Scholar 

  3. Han, D.T., Suhail, M., Ragan, E.D.: Evaluating remapped physical reach for hand interactions with passive haptics in virtual reality. IEEE Trans. Vis. Comput. Graph. 24(4), 1467–1476 (2018)

    Article  Google Scholar 

  4. Chen, C.: A study of the multi-feature gesture recognition tracking algorithm in VR-based human-computer interaction. Softw. Eng. 20(12), 23–25 (2017)

    Google Scholar 

  5. Pop, S., Luculescu, M.C., Cristea, L., et al.: Improving communication between unmanned aerial vehicles and ground control station using antenna tracking systems. In: Auer, M., Zutin, D. (eds.) Online engineering and internet of things, vol. 22, pp. 532–539. Springer, Cham (2018)

    Chapter  Google Scholar 

  6. Salucci, M., Robol, F., Anselmi, N., et al.: S-band spline-shaped aperture-stacked patch antenna for air traffic control applications. IEEE Trans. Antennas Propag. 66(8), 4292–4297 (2018)

    Article  Google Scholar 

  7. Cano, P., Ruiz-Del-Solar, J.: Robust tracking of soccer robots using random finite sets. IEEE Intell. Syst. 32(6), 22–29 (2018)

    Article  Google Scholar 

  8. Xu, X., Li, W., Ran, Q., et al.: Multisource remote sensing data classification based on convolutional neural network. IEEE Trans. Geosci. Remote Sens. 56, 1–13 (2018)

    Google Scholar 

  9. Han, J., Zhang, D., Cheng, G., et al.: Advanced deep-learning techniques for salient and category-specific object detection: a survey. IEEE Signal Process. Mag. 35(1), 84–100 (2018)

    Article  Google Scholar 

  10. Yang, H., Shao, L., Zheng, F., et al.: Recent advances and trends in visual tracking: a review. Neurocomputing 74(18), 3823–3831 (2011)

    Article  Google Scholar 

  11. Jang, S.I., Choi, K., Toh, K.A., et al.: Object tracking based on an online learning network with total error rate minimization. Pattern Recogn. 48(1), 126–139 (2015)

    Article  MATH  Google Scholar 

  12. Ross, D.A., Lim, J., Lin, R.S., et al.: Incremental learning for robust visual tracking. Int. J. Comput. Vis. 77(1–3), 125–141 (2008)

    Article  Google Scholar 

  13. Azab, M.M., Shedeed, H.A., Hussein, A.S.: New technique for online object tracking-by-detection in video. IET Image Proc. 8(12), 794–803 (2014)

    Article  Google Scholar 

  14. Zhang, S., Yao, H., Zhou, H., et al.: Robust visual tracking based on online learning sparse representation. Neurocomputing 100(1), 31–40 (2013)

    Article  Google Scholar 

  15. Jang, S.I., Choi, K., Toh, K.A., et al.: Object tracking based on an online learning network with total error rate minimization. Pattern Recogn. 48(1), 126–139 (2015)

    Article  MATH  Google Scholar 

  16. Mei, X., Ling, H.: Robust visual tracking using ℓ1 minimization. In: International Conference on Computer Vision. IEEE, 2009, pp. 1436–1443

  17. Gao, J., Zhang, T., Yang, X., et al.: Deep relative tracking. IEEE Trans. Image Process. 26(4), 1845–1858 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wang, L., Ouyang, W., Wang, X., et al.: Visual tracking with fully convolutional networks. In: IEEE International Conference on Computer Vision. IEEE Computer Society, 2015, pp. 3119–3127

  19. Bertinetto, L., Valmadre, J., Henriques, J.F., et al.: Fully-convolutional siamese networks for object tracking. In: European Conference on Computer Vision (ECCV 2016), 2016, pp. 850–865

  20. Atanassov, K.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. Atanassov, K.: Intuitionistic fuzzy logics as tools for evaluation of data mining processes. Knowl. Based Syst. 80, 122–130 (2015)

    Article  Google Scholar 

  22. Chaira, T.: A novel intuitionistic fuzzy C means clustering algorithm and its application to medical images. Appl. Soft Comput. 11, 1711–1717 (2011)

    Article  Google Scholar 

  23. Li, L.Q., Xie, W.X.: Intuitionistic fuzzy joint probabilistic data association filter and its application to multiobject tracking. Signal Process. 96(3), 433–444 (2014)

    Google Scholar 

  24. Li, J., Xie, W.X., Li, L.Q.: Online visual multiple object tracking by intuitionistic fuzzy data association. Int. J. Fuzzy Syst. 19(2), 1–12 (2016)

    Google Scholar 

  25. Li, L., Zhan, X., Liu, Z., Xie, W.: Fuzzy logic approach to visual multi-object tracking. Neurocomputing 281(3), 139–151 (2018)

    Google Scholar 

  26. Pawlak, Z.: Rough sets. Int. J. Comput. Inform. Sci. 11(5), 341–356 (1982)

    Article  MATH  Google Scholar 

  27. Changzhong, W., Mingwen, S., Qiang, H., Yuhua, Q., Yali, Q.: Feature subset selection based on fuzzy neighborhood rough sets. Knowl. Based Syst. 111(11), 173–179 (2016)

    Google Scholar 

  28. Todorova, L., Vassilev, P.: Algorithm for clustering data set represented by intuitionistic fuzzy estimates. Int. J. Bioautom. 14(1), 61–68 (2010)

    Google Scholar 

  29. Liangqun, L., Hongbing, J., Xinbo, G.: Maximum entropy fuzzy clustering with application to real-time target tracking. Signal Process. 86(11), 3432–3447 (2006)

    Article  MATH  Google Scholar 

  30. Tian, W., Wang, Y., Shan, X., Yang, J.: Track-to-track association for biased data based on the reference topology feature. IEEE Signal Process. Lett. 21(4), 449–453 (2014)

    Article  Google Scholar 

  31. Bae, S., Yoon, K.: Robust online multi-object tracking based on tracklet confidence and online discriminative appearance learning. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014, pp. 1218–1225

  32. Son, J., Baek, M., Cho, M., Han, B.: Multi-object tracking with quadruplet convolutional neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 5620–5629

  33. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Read. Comput. Vis. 24(6), 726–740 (1987)

    MathSciNet  Google Scholar 

  34. Milan, A., Rezatofighi, S., Dick, A., Reid, I. Schindler, K.: Online multi-target tracking using recurrent neural networks. In: AAAI, 2017, pp. 1–9

  35. Dollár, P., Appel, R., Belongie, S.: Fast feature pyramids for object detection. IEEE Trans. Pattern Anal. Mach. Intell. 36(8), 1532–1545 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61773267, 61301074), Science and Technology Program of Shenzhen (JCYJ20170302145519524, JCYJ20170818102503604).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang-qun Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Lq., Wang, Xl., Liu, Zx. et al. A Novel Intuitionistic Fuzzy Clustering Algorithm Based on Feature Selection for Multiple Object Tracking. Int. J. Fuzzy Syst. 21, 1613–1628 (2019). https://doi.org/10.1007/s40815-019-00645-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-019-00645-7

Keywords

Navigation