Skip to main content

Advertisement

Log in

A Predictive Integrated Genetic-Based Model for Supplier Evaluation and Selection

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

Supplier evaluation and selection is a complicated multiple criteria decision-making process which affects supply chain management (SCM) directly. Recent studies emphasize that artificial intelligence approaches obtain better performance than conventional methods in evaluating the suppliers’ performance and determining the best suppliers. Hence, this study proposes a new robust genetic-based intelligent approach, namely gene expression programming (GEP), to improve the supplier selection process for a supply chain and to cope with the drawback of the other intelligent approaches in this area. The applicability of this method was exhibited by a case study in the textile manufacturing industry. To show the performance of the mathematical-genetic model, comparisons with four intelligent techniques, namely multi-layer perceptron (MLP) neural network, radial basis function (RBF) neural network, adaptive neuro-fuzzy inference system (ANFIS) and support vector machine (SVM), were performed. The results derived from the intelligent approaches were compared by using a collected dataset from a textile factory. The obtained results demonstrated that first the GEP-based model provides a mathematical model for the suppliers’ performance based on the determined criteria, and the developed GEP model is more accurate than the four other intelligent models in terms of accuracy in performance estimation. In addition, to verify the validity of the developed model, different statistical tests were used and the results showed that the GEP model is statistically powerful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Please note that R squared (\(R^{2}\)) means R*R. So, for obtaining the value of R, the root of \(R^{2}\) was calculated.

References

  1. Fahimnia, B., Sarkis, J., Davarzani, H.: Green supply chain management: a review and bibliometric analysis. Int. J. Prod. Econ. 162, 101–114 (2015)

    Article  Google Scholar 

  2. Liang, W.-Y., Huang, C.-C.: Agent-based demand forecast in multi-echelon supply chain. Decis. Support Syst. 42, 390–407 (2006)

    Article  Google Scholar 

  3. Fallahpour, A., Amindoust, A., Antuchevičienė, J., Yazdani, M.: Nonlinear genetic-based model for supplier selection: a comparative study. Technol. Econ. Dev. Econ. 22, 532–549 (2016)

    Google Scholar 

  4. Boran, F.E., Genç, S., Kurt, M., Akay, D.: A multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method. Expert Syst. Appl. 36, 11363–11368 (2009)

    Article  Google Scholar 

  5. Chang, B., Chang, C.-W., Wu, C.-H.: Fuzzy DEMATEL method for developing supplier selection criteria. Expert Syst. Appl. 38, 1850–1858 (2011)

    Article  Google Scholar 

  6. Sarkis, J., Dhavale, D.G.: Supplier selection for sustainable operations: a triple-bottom-line approach using a Bayesian framework. Int. J. Prod. Econ. 166, 177–191 (2015)

    Article  Google Scholar 

  7. Omurca, S.I.: An intelligent supplier evaluation, selection and development system. Appl. Soft Comput. 13, 690–697 (2013)

    Article  Google Scholar 

  8. Fallahpour, A., Olugu, E.U., Musa, S.N., Wong, K.Y., Noori, S.: A decision support model for sustainable supplier selection in sustainable supply chain management. Comput. Ind. Eng. 105, 391–410 (2017)

    Article  Google Scholar 

  9. Fallahpour, A., Olugu, E., Musa, S., Khezrimotlagh, D., Wong, K.: An integrated model for green supplier selection under fuzzy environment: application of data envelopment analysis and genetic programming approach. Neural Comput. Appl. pp. 1–19 (2015)

  10. Tseng, M.-L., Chiang, J.H., Lan, L.W.: Selection of optimal supplier in supply chain management strategy with analytic network process and choquet integral. Comput. Ind. Eng. 57, 330–340 (2009)

    Article  Google Scholar 

  11. Bhattacharya, A., Geraghty, J., Young, P.: Supplier selection paradigm: an integrated hierarchical QFD methodology under multiple-criteria environment. Appl. Soft Comput. 10, 1013–1027 (2010)

    Article  Google Scholar 

  12. Humphreys, P., Wong, Y., Chan, F.: Integrating environmental criteria into the supplier selection process. J. Mater. Process. Technol. 138, 349–356 (2003)

    Article  Google Scholar 

  13. Moghassem, A., Fallahpour, A., Shanbeh, M.: An intelligent model to predict breaking strength of rotor spun yarns using gene expression programming. J. Eng. Fiber. Fabr 7, 1–10 (2012)

    Google Scholar 

  14. Fallahpour, A., Moghassem, A.: Yarn strength modelling using adaptive neuro-fuzzy inference system (ANFIS) and gene expression programming (GEP). J. Eng. Fabr. Fibers (JEFF) 8, 6–18 (2013)

    Google Scholar 

  15. Tavana, M., Fallahpour, A., Di Caprio, D., Santos-Arteaga, F.J.: A hybrid intelligent fuzzy predictive model with simulation for supplier evaluation and selection. Expert Syst. Appl. 61, 129–144 (2016)

    Article  Google Scholar 

  16. Alavi, A.H., Hasni, H., Zaabar, I., Lajnef, N.: A new approach for modeling of flow number of asphalt mixtures. Archives of Civil and Mechanical Engineering 17, 326–335 (2017)

    Article  Google Scholar 

  17. Metenidis, M.F., Witczak, M., Korbicz, J.: A novel genetic programming approach to nonlinear system modelling: application to the DAMADICS benchmark problem. Eng. Appl. Artif. Intell. 17, 363–370 (2004)

    Article  Google Scholar 

  18. Vahdani, B., Iranmanesh, S., Mousavi, S.M., Abdollahzade, M.: A locally linear neuro-fuzzy model for supplier selection in cosmetics industry. Appl. Math. Model. 36, 4714–4727 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Golmohammadi, D.: Neural network application for fuzzy multi-criteria decision making problems. Int. J. Prod. Econ. 131, 490–504 (2011)

    Article  Google Scholar 

  20. Özkan, G., İnal, M.: Comparison of neural network application for fuzzy and ANFIS approaches for multi-criteria decision making problems. Appl. Soft Comput. 24, 232–238 (2014)

    Article  Google Scholar 

  21. Dickson, G.W.: An analysis of vendor selection systems and decisions. J. Purch. 2, 5–17 (1966)

    Google Scholar 

  22. Weber, C.A., Current, J.R., Benton, W.: Vendor selection criteria and methods. Eur. J. Oper. Res. 50, 2–18 (1991)

    Article  Google Scholar 

  23. Ho, W., Xu, X., Dey, P.K.: Multi-criteria decision making approaches for supplier evaluation and selection: a literature review. Eur. J. Oper. Res. 202, 16–24 (2010)

    Article  MATH  Google Scholar 

  24. Noorul Haq, A., Kannan, G.: Design of an integrated supplier selection and multi-echelon distribution inventory model in a built-to-order supply chain environment. Int. J. Prod. Res. 44, 1963–1985 (2006)

    Article  Google Scholar 

  25. Lee, A.H.: A fuzzy supplier selection model with the consideration of benefits, opportunities, costs and risks. Expert Syst. Appl. 36, 2879–2893 (2009)

    Article  Google Scholar 

  26. Liu, F.-H.F., Hai, H.L.: The voting analytic hierarchy process method for selecting supplier. Int. J. Prod. Econ. 97, 308–317 (2005)

    Article  Google Scholar 

  27. Ghodsypour, S.H., O’Brien, C.: A decision support system for supplier selection using an integrated analytic hierarchy process and linear programming. Int. J. Prod. Econ. 56, 199–212 (1998)

    Article  Google Scholar 

  28. Chen, C.-T., Lin, C.-T., Huang, S.-F.: A fuzzy approach for supplier evaluation and selection in supply chain management. Int. J. Prod. Econ. 102, 289–301 (2006)

    Article  Google Scholar 

  29. Xia, W., Wu, Z.: Supplier selection with multiple criteria in volume discount environments. Omega 35, 494–504 (2007)

    Article  Google Scholar 

  30. Razmi, J., Jafarian, E., Amin, S.H.: An intuitionistic fuzzy goal programming approach for finding pareto-optimal solutions to multi-objective programming problems. Expert Syst. Appl. 65, 181–193 (2016)

    Article  Google Scholar 

  31. Choy, K.L., Lee, W., Lo, V.: Design of an intelligent supplier relationship management system: a hybrid case based neural network approach. Expert Syst. Appl. 24, 225–237 (2003)

    Article  Google Scholar 

  32. GüNeri, A.F., Ertay, T., YüCel, A.: An approach based on ANFIS input selection and modeling for supplier selection problem. Expert Syst. Appl. 38, 14907–14917 (2011)

    Article  Google Scholar 

  33. Golmohammadi, D., Creese, R.C., Valian, H., Kolassa, J.: Supplier selection based on a neural network model using genetic algorithm. IEEE Transactions on Neural Networks 20, 1504–1519 (2009)

    Article  Google Scholar 

  34. Koza, J.R.: Genetic programming: on the programming of computers by means of natural selection vol. 1, MIT press (1992)

  35. Moghassem, A., Fallahpour, A.: Processing parameters optimization of draw frame for rotor spun yarn strength using gene expression programming (GEP). Fibers and Polymers 12, 970–975 (2011)

    Article  Google Scholar 

  36. Ferreira, C.: Gene expression programming: a new adaptive algorithm for solving problems. arXiv preprint cs/0102027 (2001)

  37. Alavi, A.H., Gandomi, A.H., Nejad, H.C., Mollahasani, A., Rashed, A.: Design equations for prediction of pressuremeter soil deformation moduli utilizing expression programming systems. Neural Comput. Appl. 23, 1771–1786 (2013)

    Article  Google Scholar 

  38. Alavi, A.H., Gandomi, A.H.: Prediction of principal ground-motion parameters using a hybrid method coupling artificial neural networks and simulated annealing. Comput. Struct. 89, 2176–2194 (2011)

    Article  Google Scholar 

  39. Mollahasani, A., Alavi, A.H., Gandomi, A.H.: Empirical modeling of plate load test moduli of soil via gene expression programming. Comput. Geotech. 38, 281–286 (2011)

    Article  Google Scholar 

  40. Hossein Alavi, A., Hossein Gandomi, A.: A robust data mining approach for formulation of geotechnical engineering systems. Eng. Comput. 28, 242–274 (2011)

    Article  MATH  Google Scholar 

  41. Gan, M., Peng, H., Dong, X.-P.: A hybrid algorithm to optimize RBF network architecture and parameters for nonlinear time series prediction. Appl. Math. Model. 36, 2911–2919 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  42. Jang, J.-S.: ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man and Cybernetics 23, 665–685 (1993)

    Article  Google Scholar 

  43. Tavana, M., Fallahpour, A., Di Caprio, D., Santos-Arteaga, F.J.: A hybrid intelligent fuzzy predictive model with simulation for supplier evaluation and selection. Expert Syst. Appl. 61, 129–144 (2016)

    Article  Google Scholar 

  44. Bui, D.T., Tuan, T.A., Klempe, H., Pradhan, B., Revhaug, I.: Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides 13, 361–378 (2016)

    Article  Google Scholar 

  45. Smith, G.N.: Probability and statistics in civil engineering: an introduction: Collins, London (1986)

  46. Mostafavi, E.S., Mostafavi, S.I., Jaafari, A., Hosseinpour, F.: A novel machine learning approach for estimation of electricity demand: an empirical evidence from Thailand. Energy Convers. Manag. 74, 548–555 (2013)

    Article  Google Scholar 

  47. Golbraikh, A., Tropsha, A.: Beware of q 2! J. Mol. Graph. Model. 20, 269–276 (2002)

    Article  Google Scholar 

  48. Roy, P.P., Roy, K.: On some aspects of variable selection for partial least squares regression models. QSAR Comb. Sci. 27, 302–313 (2008)

    Article  Google Scholar 

  49. Mousavi, S.M., Mostafavi, E.S., Hosseinpour, F.: Gene expression programming as a basis for new generation of electricity demand prediction models. Comput. Ind. Eng. 74, 120–128 (2014)

    Article  Google Scholar 

  50. Alavi, A.H., Aminian, P., Gandomi, A.H., Esmaeili, M.A.: Genetic-based modeling of uplift capacity of suction caissons. Expert Syst. Appl. 38, 12608–12618 (2011)

    Article  Google Scholar 

  51. Malviya, R.K., Kant, R.: Green supply chain management (GSCM): a structured literature review and research implications. Benchmarking Int. J. 22, 1360–1394 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Fallahpour.

Appendix

Appendix

Note that in the MATLAB codes, d(1),…d(6) are C, D, F, QM, S and TC, and in the C ++ codes, d(0),…, d(5) are C, D, F, QM, S and TC, respectively.

The MATLAB codes of the model:

Function result = gepModel(d)

G1C0 = −5.029235;

G1C1 = 8.91211;

G2C0 = −7.345825;

G2C1 = −1.151367;

G3C0 = −1.060913;

G3C1 = −4.018219;

G4C0 = −7.345825;

G4C1 = 2.207885;

varTemp = 0.0;

varTemp = (((d(1)/(exp(G1C0) + (d(1) + d(4))))^2)*d(2));

varTemp = varTemp + d(4);

varTemp = varTemp + exp((((d(6)−(d(2)^3))−(G3C0 + d(2)))−d(2)));

varTemp = varTemp + tan(((d(4) + (d(5)/d(3)))/G4C0));

result = varTemp;

The C ++ codes of the model:

double gepModel(double d[]);

double gepModel(double d[])

{

const double G1C0 = −5.029235;

const double G1C1 = 8.91211;

const double G2C0 = −7.345825;

const double G2C1 = −1.151367;

const double G3C0 = −1.060913;

const double G3C1 = −4.018219;

const double G4C0 = −7.345825;

const double G4C1 = 2.207885;

double dblTemp = 0.0;

dblTemp = (pow((d[0]/(exp(G1C0) + (d[0] + d[3]))),2)*d[1]);

dblTemp + = d[3];

dblTemp + = exp((((d[5]-pow(d[1],3))−(G3C0 + d[1]))−d[1]));

dblTemp + = tan(((d[3] + (d[4]/d[2]))/G4C0));

return dblTemp;

}

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fallahpour, A., Wong, K.Y., Olugu, E.U. et al. A Predictive Integrated Genetic-Based Model for Supplier Evaluation and Selection. Int. J. Fuzzy Syst. 19, 1041–1057 (2017). https://doi.org/10.1007/s40815-017-0324-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-017-0324-z

Keywords

Navigation