Skip to main content

Advertisement

Log in

Cellular automata and Markov Chain (CA_Markov) model-based predictions of future land use and land cover scenarios (2015–2033) in Raya, northern Ethiopia

  • Original Article
  • Published:
Modeling Earth Systems and Environment Aims and scope Submit manuscript

Abstract

Little is known about the future land use and land cover (LULC) type in some parts of Ethiopia, but not in the study area. This study aims to predict and analyze the future scenarios of LULC (2015–2033) using cellular automata and Markov Chain model (CA_Markov) by taking into consideration the physical and socio-economic drivers of LULC dynamics. The historical LULC change data of 1984–1995, 1995–2015, and 1984–2015 were used as a baseline. Both transition rules and transition area matrix for the period 1984–1995, 1995–2015, and 1984–2015 were produced quantitatively using the Markov chain model. After that, the physical and socio-economic factors were standardized using fuzzy and then Multi-Criteria Evaluation (MCE) was used to produce the transition suitability image. The CA_Markov model was then applied as a standard contiguity filter of 5 × 5 to predict the 2033 LULC condition using the TerrSet Geospatial Modeling and Monitoring System software. The result indicated that forestland are predicted to increase by 108 sq km (44.5%), shrub/bush lands 710 sq km (20%), built-up area 286.2 sq km (48.3%), and grasslands 31 sq km (15%), respectively. However, significant reductions (losses) in a water body (Wb) 5.2 sq km (11.2%), croplands (Cl) 78.9 sq km (1.3%), barren lands (Bl) 800 sq km (27.4%), and floodplain area (Fp) 251.68 sq km (33.7%), respectively. Furthermore, the Pearson correlation result between the historical and predicted LULC type indicated that there are positive, strongly correlated, and are statistically significant relationships (r = 0.981, p = 0.000). The increase in forest land and reduction in barren and flood plain may benefit the study area. However, the decrease in the water body may contribute to the severity of drought in the area. This study may help to use as useful information to foster better decisions and improve policies in land use within the framework of sustainable land use planning system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: Gidey et al. (2017)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adhikari S, Southworth J (2012) Simulating forest cover changes of Bannerghatta National Park based on a CA-Markov model: a remote sensing approach. Remote Sens 4(10):3215–3243

    Article  Google Scholar 

  • Akin A, Aliffi S, Sunar F (2014) Spatio-temporal urban change analysis and the ecological threats concerning the third bridge in Istanbul City. Int Arch Photogramm Remote Sens Spat Inf Sci 40(7):9

    Article  Google Scholar 

  • Alimi TO, Fuller DO, Herrera SV, Arevalo-Herrera M, Quinones ML, Stoler JB, Beier JC (2016) A multi-criteria decision analysis approach to assessing malaria risk in northern South America. BMC Public Health 16(1):221

    Article  Google Scholar 

  • Al-sharif AA, Pradhan B (2014) Monitoring and predicting land use change in Tripoli Metropolitan City using an integrated Markov chain and cellular automata models in GIS. Arab J Geosci 7(10):4291–4301

    Article  Google Scholar 

  • Araya YH, Cabral P (2010) Analysis and modeling of urban land cover change in Setúbal and Sesimbra, Portugal. Remote Sens 2(6):1549–1563

    Article  Google Scholar 

  • Arsanjani JJ, Kainz W, Mousivand AJ (2011) Tracking dynamic land-use change using spatially explicit Markov Chain based on cellular automata: the case of Tehran. Int J Image Data Fusion 2(4):329–345

    Article  Google Scholar 

  • Ayenew T, GebreEgziabher M, Kebede S, Mamo S (2013) Integrated assessment of hydrogeology and water quality for groundwater-based irrigation development in the Raya Valley, northern Ethiopia. Water Int 38(4):480–492

    Article  Google Scholar 

  • Behera MUD, Borate SN, Panda SN, Behera PR, Roy PS (2012) Modelling and analyzing the watershed dynamics using cellular automata (CA)-Markov model—A geo-information based approach. J Earth Syst Sci 121(4):1011–1024

    Article  Google Scholar 

  • Bewket W, Abebe S (2013) Land-use and land-cover change and its environmental implications in a tropical highland watershed, Ethiopia. Int J Environ Stud 70(1):126–139

    Article  Google Scholar 

  • Coppedge BR, Engle DM, Fuhlendorf SD (2007) Markov models of land cover dynamics in a southern Great Plains grassland region. Landsc Ecol 22(9):1383–1393

    Article  Google Scholar 

  • Corgne S, Hubert-Moy L, Dezert J, Mercier G (2003) Land covers change prediction with a new theory of plausible and paradoxical reasoning. In: Proc. of Fusion, pp 8–11

  • Eastman JR (2003) IDRISI Kilimanjaro: guide to GIS and image processing. Clark Labs, Clark University, Worcester, p 305

    Google Scholar 

  • Eastman JR (2012) Idrisi selva tutorial. Idrisi Prod Clark Labs–Clark Univ 45:51–63

    Google Scholar 

  • Eric K, John S, Aldrik B (2007) Modelling land-use change: progress and applications. Springer, Dordrecht

  • Eva HD, Brink A, Simonetti D (2006) Monitoring land cover dynamics in sub-Saharan Africa. Institute for Environmental and Sustainability, Tech. Rep. EUR, p 22498

  • Falcucci A, Maiorano L, Ciucci P, Garton EO, Boitani L (2008) Land-cover change and the future of the Apennine brown bear: a perspective from the past. J Mammal 89(6):1502–1511

    Article  Google Scholar 

  • Fan F, Wang Y, Wang Z (2008) Temporal and spatial change detecting (1998–2003) and predicting of land use and land cover in Core corridor of Pearl River Delta (China) by using TM and ETM + images. Environ Monit Assess 137(1):127–147

    Article  Google Scholar 

  • Gashaw T, Tulu T, Argaw M, Worqlul AW (2017) Evaluation and prediction of land use/land cover changes in the Andassa watershed, Blue Nile Basin, Ethiopia. Environ Syst Res 6(1):17

    Article  Google Scholar 

  • Ghosh P, Mukhopadhyay A, Chanda A, Mondal P, Akhand A, Mukherjee S, Hazra S (2017) Application of cellular automata and Markov-chain model in geospatial environmental modeling—a review. Remote Sens Appl Soc Environ 5:64–77. https://doi.org/10.1016/j.rsase.2017.01.005

    Google Scholar 

  • Gidey E, Dikinya O, Sebego R, Segosebe E, Zenebe A (2017) Modeling the spatio-temporal dynamics and evolution of land use and land cover (1984–2015) using remote sensing and GIS in Raya, Northern Ethiopia. In: Modeling Earth Systems and Environment, pp 1–17

  • Hadi SJ, Shafri HZ, Mahir MD (2014) Modelling LULC for the period 2010–2030 using GIS and remote sensing: a case study of Tikrit, Iraq. In: IOP conference series: earth and environmental science, vol 20, 1. IOP Publishing, p 012053

  • Halmy MWA, Gessler PE, Hicke JA, Salem BB (2015) Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov-CA. Appl Geogr 63:101–112

    Article  Google Scholar 

  • Hyandye C, Martz LW (2017) A Markovian and cellular automata land-use change predictive model of the Usangu Catchment. Int J Remote Sens 38(1):64–81

    Article  Google Scholar 

  • Iacono M, Levinson D, El-Geneidy A, Wasfi R (2012) A Markov chain model of land use change in the Twin Cities, 1958–2005. In: Proceeding of the 10th international symposium on spatial accuracy assessment in natural resources and environmental sciences, pp. 10–345

  • Iacono M, Levinson D, El-Geneidy A, Wasfi R (2015) A Markov chain model of land use change. TeMA J Land Use Mobil Environ 8(3):263–276

    Google Scholar 

  • Ildoromi A, Safari Shad M (2017) Land use change prediction using a hybrid (CA_Markov) model. ECOPERSIA 5(1):1631–1640

    Article  Google Scholar 

  • Jansen LJ, Di Gregorio A (1998) The problems of current land cover classifications: development of a new approach. Land cover and land use information systems for European Union policy needs, 93. In: Proceedings of the seminar Luxembourg, pp 1–202

  • Jiang H, Eastman JR (2000) Application of fuzzy measures in multi-criteria evaluation in GIS. Int J Geogr Inf Sci 14(2):173–184

    Article  Google Scholar 

  • Keshtkar H, Voigt W (2016) A spatiotemporal analysis of landscape change using an integrated Markov chain and cellular automata models. Model Earth Syst Environ 2(1):10

    Article  Google Scholar 

  • Khoi DD, Murayama Y (2010) Delineation of suitable cropland areas using a GIS based multi-criteria evaluation approach in the Tam Dao National Park Region, Vietnam. Sustainability 2(7):2024–2043

    Article  Google Scholar 

  • Kityuttachai K, Tripathi NK, Tipdecho T, Shrestha R (2013) CA-Markov analysis of constrained coastal urban growth modeling: Hua Hin seaside city, Thailand. Sustainability 5(4):1480–1500

    Article  Google Scholar 

  • Lambin EF (1997) Modelling and monitoring land-cover change processes in tropical regions. Prog Phys Geogr 21(3):375–393

    Article  Google Scholar 

  • Lambin EF, Turner BL, Geist HJ, Agbola SB, Angelsen A, Bruce JW, George P (2001) The causes of land-use and land-cover change: moving beyond the myths. Global Environ Change 11(4):261–269

    Article  Google Scholar 

  • Li SH, Jin BX, Wei XY, Jiang YY, Wang JL (2015) Using Ca-Markov model to model the spatiotemporal change of land use/cover in Fuxian Lake for decision support. ISPRS Ann Photogramm Remote Sens Spat Inf Sci 2(4):163

    Google Scholar 

  • Lopez E, Bocco G, Mendoza M, Duhau E (2001) Predicting land-cover and land-use change in the urban fringe: a case in Morelia city, Mexico. Landsc Urban Plan 55(4):271–285

    Article  Google Scholar 

  • López-Marrero T, González-Toro A, Heartsill-Scalley T, Hermansen-Báez LA (2011) Multi-criteria evaluation and geographic information systems for land-use planning and decision making (Guide). USDA Forest Service, Southern Research Station, Gainesville, FL

  • Luo G, Amuti T, Zhu L, Mambetov BT, Maisupova B, Zhang C (2015) Dynamics of landscape patterns in an inland river delta of Central Asia based on a cellular automata-Markov model. Reg Environ Change 15(2):277–289

    Article  Google Scholar 

  • Mandal UK (2014) Geo-information based spatio-temporal modeling of urban land use and land cover change in Butwal municipality, Nepal. Int Arch Photogramm Remote Sens Spat Inf Sci 40(8):809

    Article  Google Scholar 

  • Mas JF, Paegelow M, De Jong B, Masera O, Guerrero G, Follador M, Garcia T (2007) Modelling tropical deforestation: a comparison of approaches. In: 32rd symposium on remote sensing of environment, p 3

  • Mas JF, Kolb M, Paegelow M, Olmedo M. T. C., Houet T (2014) Inductive pattern-based land use/cover change models: a comparison of four software packages. Environ Modell Softw 51:94–111

    Article  Google Scholar 

  • Memarian H, Balasundram SK, Talib JB, Sung CTB, Sood AM, Abbaspour K (2012) Validation of CA-Markov for simulation of land use and cover change in the Langat Basin, Malaysia. J Geogr Inf Syst 4(6):542–554

    Google Scholar 

  • Mishra VN, Rai PK, Mohan K (2014) Prediction of land use changes based on land change modeler (LCM) using remote sensing: a case study of Muzaffarpur (Bihar), India. J Geogr Inst “Jovan Cvijic” SASA 64(1):111–127

    Article  Google Scholar 

  • Mondal MS, Sharma N, Garg PK, Kappas M (2015) Statistical independence test and validation of CA Markov land use land cover (LULC) prediction results. Egyptian J Remote Sens Space Sci 19(2):259–272

    Article  Google Scholar 

  • Moser G, Serpico SB, Benediktsson JA (2013) Land-cover mapping by Markov modeling of spatial-contextual information in very-high-resolution remote sensing images. Proc IEEE 101(3):631–651

    Article  Google Scholar 

  • Mubea KW, Ngigi TG, Mundia CN (2011) Assessing application of Markov chain analysis in predicting land cover change: a case study of Nakuru Municipality. J Agric Sci Technol 12(2):1–19

    Google Scholar 

  • Omar NQ, Sanusi SAM, Hussin WMW, Samat N, Mohammed KS (2014) Markov-CA model using analytical hierarchy process and multiregression technique. In: IOP conference series: earth and environmental science, vol 20, no 1. IOP Publishing, p 012008. https://doi.org/10.1088/1755-1315/20/1/012008

  • Owusu S, Mul ML, Ghansah B, Osei-Owusu PK, Awotwe-Pratt V, Kadyampakeni D (2017) Assessing land suitability for aquifer storage and recharge in northern Ghana using remote sensing and GIS multi-criteria decision analysis technique. Model Earth Syst Environ. https://doi.org/10.1007/s40808-017-0360-6

    Google Scholar 

  • Paegelow M, Camacho Olmedo MT, Mas JF, Houet T (2014) Benchmarking of LULC modelling tools by various validation techniques and error analysis. Cybergeo Eur J Geogr. https://doi.org/10.4000/cybergeo.26610, http://cybergeo.revues.org/26610

  • Parsa VA, Yavari A, Nejadi A (2016) Spatio-temporal analysis of land use/land cover pattern changes in Arasbaran Biosphere Reserve: Iran. Model Earth Syst Environ 4(2):1–13

    Google Scholar 

  • Pontius GR, Malanson J (2005) Comparison of the structure and accuracy of two land change models. Int J Geogr Inf Sci 19(2):243–265

    Article  Google Scholar 

  • Pontius RG, Schneider LC (2001) Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agric Ecosyst Environ 85(1):239–248

    Article  Google Scholar 

  • Poska A, Sepp E, Veski S, Koppel K (2008) Using quantitative pollen-based land-cover estimations and a spatial CA_Markov model to reconstruct the development of cultural landscape at Rouge, South Estonia. Veg Hist Archaeobotany 17(5):527–541

    Article  Google Scholar 

  • Regmi RR, Saha SK, Balla MK (2014) Geospatial analysis of land use land cover change modeling at Phewa Lake Watershed of Nepal by using cellular automata Markov model. Int J Curr Eng Technol 4:2617–2627

    Google Scholar 

  • Rendana M, Rahim SA, Wan Mohd RI, Lihan T, Rahman ZA (2015) CA_Markov for predicting land use changes in tropical catchment area: a case study in Cameron Highland, Malaysia. J Appl Sci 15(4):689–695

    Article  Google Scholar 

  • Rocha J, Ferreira JC, Simoes J, Tenedório JA (2007) Modelling coastal and land use evolution patterns through neural network and cellular automata integration. J Coastal Res 50:827–831

    Google Scholar 

  • Roy HG, Fox DM, Emsellem K (2014) Predicting land cover change in a Mediterranean catchment at different time scales. In: International conference on computational science and its applications. Springer, Cham. pp 315–330

  • Sang L, Zhang C, Yang J, Zhu D, Yun W (2011) Simulation of land use spatial pattern of towns and villages based on CA-Markov model. Math Comput Modell 54(3):938–943

    Article  Google Scholar 

  • Sayemuzzaman M, Jha M (2014) Modeling of future land cover land use change in North Carolina using Markov chain and cellular automata model. Am J Eng Appl Sci 7(3):295

    Article  Google Scholar 

  • Serneels S, Lambin EF (2001) Proximate causes of land-use change in Narok District, Kenya: a spatial statistical model. Agric Ecosyst Environ 85(1):65–81

    Article  Google Scholar 

  • Shooshtari SJ, Gholamalifard M (2015) Scenario-based land cover change modeling and its implications for landscape pattern analysis in the Neka Watershed, Iran. Remote Sens Appl Soc Environ 1:1–19

    Google Scholar 

  • Singh SK, Mustak S, Srivastava PK, Szabó S, Islam T (2015) Predicting spatial and decadal LULC changes through cellular automata Markov chain models using earth observation datasets and geo-information. Environ Process 1(2):61–78

    Article  Google Scholar 

  • Sohl TL, Sleeter BM (2012) Land-use and land-cover scenarios and spatial modeling at the regional scale (No. 2012–3091). US Geological Survey

  • Subedi P, Subedi K, Thapa B (2013) Application of a hybrid cellular automaton-Markov (CA_Markov) Model in land-use change prediction: a case study of saddle creek drainage Basin, Florida. Appl Ecol Environ Sci 1(6):126–132

    Google Scholar 

  • Surabuddin Mondal M, Sharma N, Kappas M, Garg PK (2013) Modeling of spatio-temporal dynamics of land use and land cover in a part of Brahmaputra river basin using geoinformatic techniques. Geocarto Int 28(7):632–656

    Article  Google Scholar 

  • Veldkamp A, Lambin EF (2001) Predicting land-use change. Agric Ecosyst Environ 85:1–6

    Article  Google Scholar 

  • Verburg PH, Schot PP, Dijst MJ, Veldkamp A (2004) Land use change modelling: current practice and research priorities. GeoJournal 61(4):309–324

    Article  Google Scholar 

  • Verburg PH, Kok K, Pontius RG Jr, Veldkamp A (2006) Modeling land-use and land-cover change. In: Land-use and land-cover change. Springer, Berlin, pp 117–135

    Chapter  Google Scholar 

  • Wang R, Murayama Y (2017) Change of Land Use/cover in Tianjin city based on the Markov and cellular automata models. ISPRS Int J GeoInform 6(5):150

    Article  Google Scholar 

  • Wang S, Zhang Z, Wang X (2014) Land use change and prediction in the Baimahe Basin using GIS and CA_Markov model. In: IOP conference series: earth and environmental science, vol 17, p 012074. https://doi.org/10.1088/1755-1315/17/1/012074

  • Weng Q (2002) Land use change analysis in the Zhujiang delta of China using satellite remote sensing, GIS and stochastic modelling. J Environ Manag 64(3):273–284

    Article  Google Scholar 

  • Woodcock CE, Strahler AH, Franklin J (1983) Remote sensing for land management and planning. Environ Manag 7(3):223–237

    Article  Google Scholar 

  • Wu Q, Li HQ, Wang RS, Paulussen J, He Y, Wang M, Wang Z (2006) Monitoring and predicting land use change in Beijing using remote sensing and GIS. Landsc Urban Plan 78(4):322–333

    Article  Google Scholar 

  • Yang X, Zheng XQ, Chen R (2014) A land use change model: Integrating landscape pattern indexes and Markov-CA. Ecol Modell 283:1–7

    Article  Google Scholar 

  • Yang Y, Zhang S, Yang J, Xing X, Wang D (2015) Using a cellular automata–Markov model to reconstruct spatial land-use patterns in Zhenlai County. Northeast China Energ 8(5):3882–3902

    Google Scholar 

  • Ye B, Bai Z (2008) Simulating land use/cover changes of Nenjiang County based on CA-Markov model. In: Computer and computing technologies in agriculture, vol I. pp 321–329

  • Yulianto F, Prasasti I, Pasaribu JM, Fitriana HL, Haryani NS, Sofan P (2016) The dynamics of land use/land cover change modeling and their implication for the flood damage assessment in the Tondano watershed, North Sulawesi, Indonesia. Model Earth Syst Environ 2(1):47

    Article  Google Scholar 

  • Zhilong Z, Xue W, Yili Z, Jungang G (2017) Assessment of changes in the value of ecosystem services in the Koshi River Basin, central high Himalayas based on land cover changes and the CA–Markov model. J Resour Ecol 8(1):67–76

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by Mekelle University under Grant number CRPO/ICS/PhD/001/09 and the Open Society Foundation–Africa Climate Change Adaptation Initiative (OSF–ACCAI). The lead author is thankful for the PhD scholarship given by the Intra-Africa-Transdisciplinary Training for Resource Efficiency and Climate Change Adaptation in Africa (TreccAfrica II) project. The authors would also like to thank the National Aeronautics and Space Administration (NASA), United States Geological Survey (USGS) for the provision of Landsat imagery.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eskinder Gidey.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gidey, E., Dikinya, O., Sebego, R. et al. Cellular automata and Markov Chain (CA_Markov) model-based predictions of future land use and land cover scenarios (2015–2033) in Raya, northern Ethiopia. Model. Earth Syst. Environ. 3, 1245–1262 (2017). https://doi.org/10.1007/s40808-017-0397-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40808-017-0397-6

Keywords

Navigation