Skip to main content
Log in

Experimental Performance of RC Beams Strengthened with Aluminum Honeycomb Sandwich Composites and CFRP U-Jackets

  • Research paper
  • Published:
Experimental Techniques Aims and scope Submit manuscript

Abstract

This study aims to investigate the flexural behavior of reinforced concrete (RC) beams strengthened using aluminum honeycomb sandwich panels (AHSPs) with three different thicknesses (6, 10, and 15 mm) and CFRP U-Jackets with different cross-section configurations (i.e. support and middle sections). The experimental performance of RC beams was evaluated utilizing AHSPs and CFRP composites under four-point bending tests. The strengthened RC beams (HCRC-2-HCRC-10) were compared with the control beam (HCRC-1) in terms of flexural load carrying capacity, ductility, failure modes, and cracks patterns. The results revealed that the HCRC-9 beam specimen strengthened using 15 mm thickness AHSP displayed higher flexural performance than its counterparts. The HCRC-9 beam exhibited more ductile behavior, which depends on the failure mode. Strengthening with AHSP decreased visible width shear cracks compared to the un-strengthened beam. It was also detected that increase in the thickness of AHSP improved the flexural behavior of RC beams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Mohammed AA, Manalo AC, Maranan GB, Muttashar M, Zhuge Y, Vijay P, Pettigrewg J (2019) Effectiveness of a novel composite jacket in repairing damaged reinforced concrete structures subject to flexural loads. Comp Str 233:111634. https://doi.org/10.1016/j.compstruct.2019.111634

    Article  Google Scholar 

  2. Babamohammadi S, Fantuzzi N, Lonardi G (2019) Mechanical assessment of hollow-circular FRP beams. Comp Str 227:111313. https://doi.org/10.1016/j.compstruct.2019.111313

    Article  Google Scholar 

  3. Carozzi FG, Bellini A, D’Antino T, Felice G, Focacci F, Hojdys L et al (2017) Experimental investigation of tensile and bond properties of Carbon-FRCM composites for strengthening masonry elements. Comp Part B: Eng 128:100–119. https://doi.org/10.1016/j.compositesb.2017.06.018

    Article  CAS  Google Scholar 

  4. Li J, Xie J, Liu F, Lu Z (2019) A critical review and assessment for FRP-concrete bond systems with epoxy resin exposed to chloride environments. Comp Str 229:111372. https://doi.org/10.1016/j.compstruct.2019.111372

    Article  Google Scholar 

  5. Demers CE (1998) Fatigue strength degradation of E-glass FRP composites and carbon FRP composites. Const Build Mat 12:311–318. https://doi.org/10.1016/S0950-0618(98)00012-9

    Article  Google Scholar 

  6. Hota G, Liang RF, (2011) Advanced fiber reinforced polymer composites for sustainable civil infrastructures, International symposium on innovation & sustainability of structures in civil engineering, Xiamen University, China

  7. Hollaway LC, Head PR (2001) Advanced Polymer Composites and Polymers in the Civil Infrastructure. Elsevier, Oxford

    Book  Google Scholar 

  8. Pham TM, Hao H (2016) Review of concrete structures strengthened with FRP against impact loading. Str 7:59–70. https://doi.org/10.1016/j.istruc.2016.05.003

    Article  Google Scholar 

  9. Maras MM, (2021) Mechanical properties of confined damaged concrete strengthened with fiber reinforced polymer wraps. El-Cez J S Eng 8(2):706–717. https://doi.org/10.31202/ecjse.866687

  10. Frigione M, Lettieri M (2018) Durability issues and challenges for material advancements in FRP employed in the construction industry. Poly 10(3):247. https://doi.org/10.3390/polym10030247

    Article  CAS  Google Scholar 

  11. Maras MM, Kantarcı F (2021) structural performance of reinforced concrete (RC) moment frame connections strengthened using FRP composite jackets. Arab J Sci Eng 46:10975–10992. https://doi.org/10.1007/s13369-021-06120-6

    Article  CAS  Google Scholar 

  12. Nanni A (2003) North American design guidelines for concrete reinforcement and strengthening using FRP: Principles, applications and unresolved issues. Constr Build Mater 17:439–446. https://doi.org/10.1016/S0950-0618(03)00042-4

    Article  Google Scholar 

  13. Turco V, Secondin S, Morbin A, Valluzzi MR, Modena C (2006) Flexural and shear strengthening of un-reinforced masonry with FRP bars. Compos Sci Technol 66(2):289–296. https://doi.org/10.1016/j.compscitech.2005.04.042

    Article  CAS  Google Scholar 

  14. Triantafillou TC (1998) Strengthening of masonry structures using epoxy-bonded FRP laminates. J Compos Constr 2(2):96–104. https://doi.org/10.1061/(ASCE)1090-0268(1998)2:2(96)

    Article  Google Scholar 

  15. Grande E, Imbimbo M, Sacco E (2011) Bond behavior of CFRP laminates glued on clay bricks: experimental and numerical study. Comp Part B 42(2):330–340. https://doi.org/10.1016/j.compositesb.2010.09.020

    Article  CAS  Google Scholar 

  16. Realfonzo R, Napoli A, Pinilla JGR (2014) Cyclic behavior of RC beam–column joints strengthened with FRP systems. Constr Build Mater 54:282–297. https://doi.org/10.1016/j.conbuildmat.2013.12.043

    Article  Google Scholar 

  17. Majumder S, Saha S (2021) Quasi-static cyclic performance of RC exterior beam-column joint assemblages strengthened with geosynthetic materials. Structures 29:1210–1228. https://doi.org/10.1016/j.istruc.2020.12.010

    Article  Google Scholar 

  18. Majumder S, Saha S (2021) Shear behaviour of RC beams strengthened using geosynthetic materials by external and internal confinement. Structures 32:1665–1678. https://doi.org/10.1016/j.istruc.2021.03.107

    Article  Google Scholar 

  19. Majumder S, Saha S (2020) Behaviour of reinforced concrete beam strengthened in shear with geosynthetic. Adv Struct Eng 23(9):1851–1864. https://doi.org/10.1177/1369433220901820

    Article  Google Scholar 

  20. Khan HA, Nanda RP (2020) Out-of-plane bending of masonry wallette strengthened with geosynthetic. Constr Build Mater 231:117198. https://doi.org/10.1016/j.conbuildmat.2019.117198

    Article  Google Scholar 

  21. Maras MM, Kose MM (2021) Structural behavior of masonry panels strengthened using geopolymer composites in compression tests. Iran J Sci Technol Trans Civ Eng 45:767–777. https://doi.org/10.1007/s40996-020-00433-6

    Article  Google Scholar 

  22. Heimbs S (2009) Virtual testing of sandwich core structures using dynamic finite element simulations. Comput Mater Sci 45:205–216

    Article  CAS  Google Scholar 

  23. He M, Hu W (2008) A study on composite honeycomb sandwich panel structure. Mater Des 29(3):709–713. https://doi.org/10.1016/j.commatsci.2008.09.017

    Article  CAS  Google Scholar 

  24. Bai Y, Yu K, Zhao J, Zhao R (2018) Experimental and simulation investigation of temperature effects on modal characteristics of composite honeycomb structure. Compos Struct 201:816–827. https://doi.org/10.1016/j.compstruct.2018.06.106

    Article  Google Scholar 

  25. Davalos JF, Qiao P, Xu XF, Robinson J, Barth KE (2001) Modeling and characterization of fiber-reinforced plastic honeycomb sandwich panels for highway bridge applications. Compos Struct 52:441–452. https://doi.org/10.1016/S0263-8223(01)00034-4

    Article  Google Scholar 

  26. Renji K, Nair PS, Narayanan S (1996) Modal density of composite honeycomb sandwich panels. J Sound Vib 195(5):687–699. https://doi.org/10.1006/jsvi.1996.0456

    Article  Google Scholar 

  27. Paik JK, Thayamballi AK, Kim GS (1999) The strength characteristics of aluminum honeycomb sandwich panels. Thin-Walled Struct 35(3):205–231. https://doi.org/10.1016/S0263-8231(99)00026-9

    Article  Google Scholar 

  28. Dharmasena KP et al (2008) Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading. Int J Impact Eng 35(9):1063–1074. https://doi.org/10.1016/j.ijimpeng.2007.06.008

    Article  Google Scholar 

  29. Huang WC, Ng CF (1998) Sound insulation improvement using honeycomb sandwich panels. Appl Acoust 53(1):163–177. https://doi.org/10.1016/S0003-682X(97)00033-9

    Article  Google Scholar 

  30. Zhao Y, Sun Y, Li R, Sun Q, Feng J (2017) Response of aramid honeycomb sandwich panels subjected to Intense impulse loading by Mylar Flyer. Int J Impact Eng 104:75–84. https://doi.org/10.1016/j.ijimpeng.2017.02.008

    Article  Google Scholar 

  31. Zhou G, Hill MD (2009) Impact damage and energy absorbing characteristics and residual in-plane compressive strength of Honeycomb sandwich panels. J Sandwich Struct Mater 11:329–356. https://doi.org/10.1177/1099636209105704

    Article  Google Scholar 

  32. Beukers A (1999) Lightness, the inevitable renaissance of minimum energy structures. In: Van Hinte (ed). Rotterdam: 010 Publishers

  33. Zhong J, Zhou Y, Bao Q, Wang E, Li Q (2017) Strengthening mechanism of channel steel plate for notched concrete beams against fracture: test and numerical study. Eng Fracture Mech 180:132–147. https://doi.org/10.1016/j.engfracmech.2017.05.027

    Article  Google Scholar 

  34. Yang C, Xu P, Yao S et al (2018) Optimization of honeycomb strength assignment for a composite energy-absorbing structure. Thin Wall Struct 127:741–755. https://doi.org/10.1016/j.tws.2018.03.014

    Article  Google Scholar 

  35. Farooq U, Ahmad MS, Rakha SA et al (2017) Interfacial mechanical performance of composite honeycomb sandwich panels for aerospace applications. Arab J Sci Eng 42:1775–1782. https://doi.org/10.1007/s13369-016-2307-z

    Article  Google Scholar 

  36. Zaki MA, Rasheed HA, Alkhrdaji T (2019) Performance of CFRP-strengthened concrete beams fastened with distributed CFRP dowel and fiber anchors. Compos B Eng 176:107117. https://doi.org/10.1016/j.compositesb.2019.107117

    Article  Google Scholar 

  37. Kim Y, Ghannoum WM, Jirsa JO (2015) Shear behavior of full-scale reinforced concrete T-beams strengthened with CFRP strips and anchors. Constr Build Mater 94:1–9. https://doi.org/10.1016/j.conbuildmat.2015.06.005

    Article  CAS  Google Scholar 

  38. Lestari W, Qiao PZ (2005) Damage detection of fiber-reinforced polymer honeycomb sandwich beams. Compos Struc 67(3):365–373. https://doi.org/10.1016/j.compstruct.2004.01.023

    Article  Google Scholar 

  39. Gartner A, Douglas E, Dolan C, Hamilton H (2011) Small beam bond test method for CFRP composites applied to concrete. J Compos Constr 10(6):52–61. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000151

    Article  CAS  Google Scholar 

  40. Tatar J, Hamilton HR (2015) Bond durability factor for externally bonded CFRP systems in concrete structures. J Compos Constr. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000587

    Article  Google Scholar 

  41. Bezazi A et al (2007) Fatigue life prediction of sandwich composite materials under flexural tests using Bayesian trained artificial, neural network. Int J Fat 29:738–747. https://doi.org/10.1016/j.ijfatigue.2006.06.013

    Article  CAS  Google Scholar 

  42. Giglio M, Manes A, Gilioli A (2012) Investigations on sandwich core properties through an experimental–numerical approach. Compos Part B-Eng 43:361–374. https://doi.org/10.1016/j.compositesb.2011.08.016

    Article  CAS  Google Scholar 

  43. Toradmal K, Waghmare P, Sollapur S (2017) Three-point bending analysis of honeycomb sandwich panels experimental approach. Int J Eng Tech 3(5):189–193

    Google Scholar 

  44. Belingardi G et al (2007) Fatigue analysis of honeycomb-composite sandwich beams. Comp Part A 38:1183–1191. https://doi.org/10.1016/j.compositesa.2006.06.007

    Article  Google Scholar 

  45. Wahl L, Maas S, Waldmann D, Zürbes A, Frères P (2012) Shear stresses in honeycomb sandwich plates: analytical solution, finite element method and experimental verification. J Sandwich Struct Mater 14(4):449–468. https://doi.org/10.1177/1099636212444655

    Article  Google Scholar 

  46. Al-Tersawy SH (2013) Effect of fiber parameters and concrete strength on shear behavior of strengthened RC beams. Constr Build Mater 44:15–24. https://doi.org/10.1016/j.conbuildmat.2013.03.007

    Article  Google Scholar 

  47. Li W, Leung CKY (2017) Effect of shear span-depth ratio on mechanical performance of RC beams strengthened in shear with U-wrapping FRP strips. Compos Struct 177:141–157. https://doi.org/10.1016/j.compstruct.2017.06.059

    Article  Google Scholar 

  48. Fu B, Teng JG, Chen JF, Chen GM, Guo YC (2017) Concrete cover separation in FRP plated RC beams: mitigation using FRP U-Jackets. J Compos Constr 21:204016077. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000721

    Article  Google Scholar 

  49. Juliyana M, Krishnan RS (2018) Experimental and simulation of split semi-torus key in PVC foam core to improve the debonding resistance of composite sandwich panel. Mater Res Expr 5:025307

    Article  Google Scholar 

  50. Mosallam AS (2016) Structural evaluation and design procedure for wood beams repaired and retrofitted with FRP laminates and honeycomb sandwich panels. Compos Part B Eng 87:196e213. https://doi.org/10.1016/j.compositesb.2015.09.053

  51. Sun Z, Shi S, Guo X, Hu X, Chen H (2016) On compressive properties of composite sandwich structures with grid reinforced honeycomb core. Comp Part B: Eng 94:245–252. https://doi.org/10.1016/j.compositesb.2016.03.054

    Article  CAS  Google Scholar 

  52. Wang D (2009) Impact behavior and energy absorption of paper honeycomb sandwich panels. Int J Impact Eng 36:110–114. https://doi.org/10.1016/j.ijimpeng.2008.03.002

    Article  Google Scholar 

  53. Sun G, Chen D, Huo X, Zheng G, Li Q (2018) Experimental and numerical studies on indentation and perforation characteristics of honeycomb sandwich panels. Compos Struct 184:110–124. https://doi.org/10.1016/j.compstruct.2017.09.025

    Article  Google Scholar 

  54. Yi-Ming J et al (2017) Two-stage cumulative bending fatigue behavior for the adhesively bonded aluminum honeycomb sandwich panels. Mater Desig 54:805–813. https://doi.org/10.1016/j.matdes.2013.09.010

    Article  CAS  Google Scholar 

  55. Abbadi A et al (2015) Experimental study on the fatigue behaviour of honeycomb sandwich panels with artificial defects. Compos Struct 120:397–405. https://doi.org/10.1016/j.compstruct.2014.10.020

    Article  Google Scholar 

  56. Arbaoui J, Schmitt Y, Pierrot JL, Royer FX (2014) Effect of core thickness and intermediate layers on mechanical properties of polypropylene honeycomb multi-layer sandwich structures. Arch Metal Mater 59:11–16. https://doi.org/10.2478/amm-2014-0002

    Article  Google Scholar 

  57. Arbaoui J, Moustabchir H, Pruncu CI, Schmitt Y (2016) Modeling and experimental analysis of polypropylene honeycomb multi-layer sandwich composites under four-point bending. J Sand Struct Mater 00:1–19. https://doi.org/10.1177/1099636216659779

    Article  CAS  Google Scholar 

  58. Li D, Zhao C, Jiang L, Jiang N (2014) Experimental study on the bending properties and failure mechanism of 3D integrated woven spacer composites at room and cryogenic temperature. Compos Struct 111:56–65. https://doi.org/10.1016/j.compstruct.2013.12.026

    Article  Google Scholar 

  59. Nirupama G, Reddy VD, Krishnaiah G (2014) Design and fabrication of spot welded corrugated panel under three point bending by FEM. Proc Eng 97:1282–1292. https://doi.org/10.1016/j.proeng.2014.12.408

    Article  Google Scholar 

  60. Crupi V, Epasto G, Guglielmino E (2012) Collapse modes in aluminium honeycomb sandwich panels under bending and impact loading. Int J Imp Eng 43:6–15. https://doi.org/10.1016/j.ijimpeng.2011.12.002

    Article  Google Scholar 

  61. Murthy O, Munirudrappa N, Srikanth L, Rao RMVGK (2006) Strength and Stiffness Optimization Studies on Honeycomb Core Sandwich Panels. J Reinf Plast Comp 25(6):663. https://doi.org/10.1177/0731684406058288

    Article  CAS  Google Scholar 

  62. Daniel IM, Gdoutos EE, Rajapakse YDS (2009) Major accomplishments in composite materials and sandwich structures. Springer, Netherlands, p 818

    Google Scholar 

  63. Jeyakrishnan PR, Chockalingam KKSK, Narayanasamy R (2013) Studies on buckling behavior of honeycomb sandwich panel. Int J Adv Manuf Technol 65:803–815. https://doi.org/10.1007/s00170-012-4218-9

    Article  Google Scholar 

  64. Shahverdi H, Barati MR, Hakimelahi B (2019) Post-buckling analysis of honeycomb core sandwich panels with geometrical imperfection and graphene reinforced nano-composite face sheets. Mater Res Express 6(9):095017

    Article  CAS  Google Scholar 

  65. Gutierrez AJ, Webber JPH (1980) Flexural wrinkling of honeycomb sandwich beams with laminated faces. Int J Solids Struct 16(7):645–665. https://doi.org/10.1016/0020-7683(80)90023-2

    Article  Google Scholar 

  66. Amran YHM, Rashid RSM, Hejazi F, Safiee NA, Ali AAA (2016) Response of precast foamed concrete sandwich panels to flexural loading. J Build Eng 7:143–158. https://doi.org/10.1016/j.jobe.2016.06.006

    Article  Google Scholar 

  67. Farkas J, Jármai K (1982) Structural synthesis of sandwich beams with outer layers of box-section. J Sound Vib 84(1):47–56. https://doi.org/10.1016/0022-460X(82)90431-X

    Article  Google Scholar 

  68. Potzta G, Kollár LP (2003) Analysis of building structures by replacement sandwich beams. Int J Solids Struct 40(3):535–553. https://doi.org/10.1016/S0020-7683(02)00622-4

    Article  Google Scholar 

  69. Sayyad AS, Ghugal YM (2017) Bending, buckling and free vibration of laminated composite and sandwich beams: a critical review of literature. Compos Struc 171:486–504. https://doi.org/10.1016/j.compstruct.2017.03.053

    Article  Google Scholar 

  70. Mullen SJ (1986) I-Beam Honeycomb Material, U.S. Patent No. 4,632,862

  71. Imbalzano G, Linforth S, Ngo TD, Lee PVS, Tran P (2018) Blast resistance of auxetic and honeycomb sandwich panels: Comparisons and parametric designs. Compos Struct 183:242–261. https://doi.org/10.1016/j.compstruct.2017.03.018

    Article  Google Scholar 

  72. Mousanezhad D, Ghosh R, Ajdari A, Hamouda A, Nayeb-Hashemi H, Vaziri A (2014) Impact resistance and energy absorption of regular and functionally graded hexagonal honeycombs with cell wall material strain hardening. Int J Mech Sci 89:413–422. https://doi.org/10.1016/j.ijmecsci.2014.10.012

    Article  Google Scholar 

  73. Silva MJ, Gibson LJ (1997) The effects of non-periodic microstructure and defects on the compressive strength of two-dimensional cellular solids. Int J Mech Sci 39:549–563. https://doi.org/10.1016/S0020-7403(96)00065-3

    Article  Google Scholar 

  74. Li JR, Cheng HF, Yu JL, Han FS (2003) Effect of dual-size cell mix on the stiffness and strength of open-cell aluminum foams. Mater Sci Eng A 362:240–248. https://doi.org/10.1016/S0921-5093(03)00570-7

    Article  CAS  Google Scholar 

  75. Spadoni A, Ruzzene M, Scarpa F (2005) Global and local linear buckling behaviour of chiral cellular structure. Phys Status Solid B 242(3):695–709. https://doi.org/10.1002/pssb.200460387

    Article  CAS  Google Scholar 

  76. Scarpa F, Burriesci G, Smith FC, Chambers B (2003) Mechanical and electromagnetic behaviour of auxetic honeycomb structures. Aeronaut J 2774:175–183. https://doi.org/10.1017/S0001924000013269

    Article  Google Scholar 

  77. . Carruthers J, Kettle A, Robinson A (1998) Energy absorption capability and crash worthiness of composite material structures: a review. Appl Mech Rev 51635-51649.https://doi.org/10.1115/1.3100758

  78. Bates SRG, Farrow IR, Trask RS (2016) 3D printed polyurethane honeycombs for repeated tailored energy absorption. Mater Des 112:172–183. https://doi.org/10.1016/j.matdes.2016.08.062

    Article  CAS  Google Scholar 

  79. Al Antali A, Umer R, Zhou J, Cantwell WJ (2017) The energy-absorbing properties of composite tube-reinforced aluminum honeycomb. Compos Struct 176:630–639. https://doi.org/10.1016/j.compstruct.2017.05.063

    Article  Google Scholar 

  80. Liu Y, Zhou Q, Wei X, Xia Y (2020) Testing and modeling tearing and air effect of aluminum honeycomb under out-of-plane impact loading. Int J Impact Eng 135:103402. https://doi.org/10.1016/j.ijimpeng.2019.103402

    Article  Google Scholar 

  81. Xie S, Zhou H (2015) Analysis and optimisation of parameters influencing the out-of-plane energy absorption of an aluminium honeycomb. Thin-Walled Struct 89:169–177. https://doi.org/10.1016/j.tws.2014.12.024

    Article  Google Scholar 

  82. Gao P, Gu X, Mosallam AS (2016) Flexural behavior of preloaded reinforced concrete beams strengthened by prestressed CFRP laminates. Compos Struct 157:33–50. https://doi.org/10.1016/j.compstruct.2016.08.013

    Article  Google Scholar 

  83. Ismail MK, Hassan AAA (2017) Ductility and cracking behavior of reinforced self consolidating rubberized concrete beams. J Mater Civil Eng 29:1. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001699

    Article  Google Scholar 

  84. Meng D, Lee CK, Zhang YX (2017) Flexural and shear behaviours of plain and reinforced polyvinyl alcohol-engineered cementitious composite beams. Eng Struct 151:261–272. https://doi.org/10.1016/j.engstruct.2017.08.036

    Article  Google Scholar 

  85. Xu S, Hou L, Zhang X (2012) Flexural and shear behaviors of reinforced ultra high toughness cementitious composite beams without web reinforcement under concentrated load. Eng Struct 39:176–186. https://doi.org/10.1016/j.engstruct.2012.01.011

    Article  Google Scholar 

  86. Hou L, Xu S, Zhang X et al (2013) Shear behaviors of reinforced ultra high toughness cementitious composite slender beams with stirrups. J Mater Civ Eng 26(3):466–475. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000833

    Article  Google Scholar 

  87. Yuan F, Pan J, Wu Y (2014) Numerical study on flexural behaviors of steel reinforced engineered cementitious composite (ECC) and ECC/concrete composite beams. Sci China Technol Sci 57:637–645. https://doi.org/10.1007/s11431-014-5478-4

    Article  CAS  Google Scholar 

  88. Thomsen H, Spacone E, Limkatanyu S, Camata G (2004) Failure mode analyses of reinforced concrete beams strengthened in flexure with externally bonded fiber-reinforced polymers. J Compos Const 8(2):123–131. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:2(123)

    Article  Google Scholar 

  89. Buyle-Bodin F, David E, Ragneau E (2002) Finite element modeling of flexural behaviour of externally bonded CFRP reinforced concrete structures. Eng Struct 24:1423–1429. https://doi.org/10.1016/S0141-0296(02)00085-8

    Article  Google Scholar 

  90. Lu C, Zhao M, Jie L, Wang J, Gao Y, Cui X, Chen P (2015) Stress Distribution on Composite Honeycomb Sandwich Structure Suffered from Bending Load. Proce Eng 99:405–412. https://doi.org/10.1016/j.proeng.2014.12.554

    Article  CAS  Google Scholar 

  91. Othman A, Barton D (2008) Failure initiation and propagation characteristics of honeycomb sandwich composites. Compos Struct 85(2):126–138. https://doi.org/10.1016/j.compstruct.2007.10.034

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.M. Maras.

Ethics declarations

Conflict of Interest

All authors declare no conficts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kantarci, M., Maras, M. & Ayaz, Y. Experimental Performance of RC Beams Strengthened with Aluminum Honeycomb Sandwich Composites and CFRP U-Jackets. Exp Tech 47, 767–786 (2023). https://doi.org/10.1007/s40799-022-00589-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40799-022-00589-y

Keywords

Navigation