Skip to main content

Advertisement

Log in

Virus-Specific T Cells for the Treatment of Malignancies—Then, Now, and the Future

  • Preclinical and Clinical Cellular Therapies (E Horwitz, Section Editor)
  • Published:
Current Stem Cell Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Virus-associated malignancies are a global health burden, constituting 10–12% of cancers worldwide. As these tumors express foreign viral antigens that can elicit specific T cell responses, virus-directed immunotherapies are a promising treatment strategy. Specifically, adoptive cell transfer of virus-specific T cells (VSTs) has demonstrated the potential to eradicate cancers associated with certain viruses.

Recent Findings

Initial studies in 1990s first showed that VSTs targeting the Epstein-Barr virus (EBVSTs) can induce complete remissions in patients with EBV-induced post-transplant lymphoproliferative disease. Since then, studies have validated the specificity and safety of VSTs in some lymphomas and solid malignancies. However, challenges remain to optimize this platform for widespread use, including enhancing potency and persistence, overcoming the immunosuppressive tumor microenvironment, and streamlining manufacturing processes that comply with regulatory requirements.

Summary

This review focuses on data from clinical trials evaluating VSTs directed against three viruses (EBV, HPV, and MCPyV), as well as recent preclinical and clinical advances, and potential future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chen Y, Williams V, Filippova M, Filippov V, Duerksen-Hughes P. Viral carcinogenesis: factors inducing DNA damage and virus integration. Cancers (Basel). 2014;6(4):2155–86.

    Article  PubMed  Google Scholar 

  2. Plummer M, de Martel C, Vignat J, Ferlay J, Bray F, Franceschi S. Global burden of cancers attributable to infections in 2012: a synthetic analysis. Lancet Glob Health. 2016;4(9):e609–e16.

    Article  PubMed  Google Scholar 

  3. Moore PS, Chang Y. Why do viruses cause cancer? Highlights of the first century of human tumour virology. Nat Rev Cancer. 2010;10(12):878–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bouvard V, Baan R, Straif K, Grosse Y, Secretan B, Ghissassi FE, et al. A review of human carcinogens—part B: biological agents. Lancet Oncol. 2009;10(4):321–2.

    Article  PubMed  Google Scholar 

  5. Michaelis M, Doerr HW, Cinatl J. The story of human cytomegalovirus and cancer: increasing evidence and open questions. Neoplasia. 2009;11(1):1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kenan DJ, Mieczkowski PA, Burger-Calderon R, Singh HK, Nickeleit V. The oncogenic potential of BK-polyomavirus is linked to viral integration into the human genome. J Pathol. 2015;237(3):379–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Smith C, Khanna R. Immune-based therapeutic approaches to virus-associated cancers. Curr Opin Virol. 2018;32:24–9.

    Article  CAS  PubMed  Google Scholar 

  8. Rooney CM, Ng CYC, Loftin S, Smith CA, Li C, Krance RA, et al. Use of gene-modified virus-specific T lymphocytes to control Epstein-Barr-virus-related lymphoproliferation. Lancet. 1995;345(8941):9–13.

    Article  CAS  PubMed  Google Scholar 

  9. Rooney CM, Leen AM, Vera JF, Heslop HE. T lymphocytes targeting native receptors. Immunol Rev. 2014;257(1):39–55.

    Article  CAS  PubMed  Google Scholar 

  10. Stevanovic S, Helman SR, Wunderlich JR, Doran SL, Langhan MM, Kwong MLM, et al. A phase II study of tumor-infiltrating lymphocyte therapy for human papillomavirus-associated epithelial cancers. Clin Cancer Res. 2018;25(5):1486–93.

  11. Chapuis AG, Afanasiev OK, Iyer JG, Paulson KG, Parvathaneni U, Hwang JH, et al. Regression of metastatic Merkel cell carcinoma following transfer of polyomavirus-specific T cells and therapies capable of re-inducing HLA class-I. Cancer Immunol Res. 2014;2(1):27–36.

    Article  CAS  PubMed  Google Scholar 

  12. Heslop HE, Slobod KS, Pule MA, Hale GA, Rousseau A, Smith CA, et al. Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood. 2010;115(5):925–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Leung W, Heslop HE. Adoptive immunotherapy with antigen-specific T cells expressing a native TCR. Cancer Immunol Res. 2019;7(4):528–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bollard CM, Gottschalk S, Torrano V, Diouf O, Ku S, Hazrat Y, et al. Sustained complete responses in patients with lymphoma receiving autologous cytotoxic T lymphocytes targeting Epstein-Barr virus latent membrane proteins. J Clin Oncol. 2014;32(8):798–808.

    Article  CAS  PubMed  Google Scholar 

  15. Hunder NN, Wallen H, Cao J, Hendricks DW, Reilly JZ, Rodmyre R, et al. Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1. N Engl J Med. 2008;358(25):2698–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shannon-Lowe C, Rickinson A. The global landscape of EBV-associated tumors. Front Oncol. 2019;9:713.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gottschalk S, Rooney CM. Adoptive T-cell immunotherapy. Curr Top Microbiol Immunol. 2015;391:427–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Young LS, Murray PG. Epstein-Barr virus and oncogenesis: from latent genes to tumours. Oncogene. 2003;22(33):5108–21.

    Article  CAS  PubMed  Google Scholar 

  19. Thorley-Lawson DA. Epstein-Barr virus: exploiting the immune system. Nat Rev Immunol. 2001;1(1):75–82.

    Article  CAS  PubMed  Google Scholar 

  20. Doubrovina E, Oflaz-Sozmen B, Prockop SE, Kernan NA, Abramson S, Teruya-Feldstein J, et al. Adoptive immunotherapy with unselected or EBV-specific T cells for biopsy-proven EBV+ lymphomas after allogeneic hematopoietic cell transplantation. Blood. 2012;119(11):2644–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rooney CM, Smith CA, Ng CYC, Loftin SK, Sixbey JW, Gan Y, et al. Infusion of cytotoxic T cells for the prevention and treatment of Epstein-Barr virus–induced lymphoma in allogeneic transplant recipients. Blood. 1998;92(5):1549–55.

    Article  CAS  PubMed  Google Scholar 

  22. Heslop HE, Ng CY, Li C, Smith CA, Loftin SK, Krance RA, et al. Long-term restoration of immunity against Epstein-Barr virus infection by adoptive transfer of gene-modified virus-specific T lymphocytes. Nat Med. 1996;2(5):551–5.

    Article  CAS  PubMed  Google Scholar 

  23. Haque T, Amlot PL, Helling N, Thomas JA, Sweny P, Rolles K, et al. Reconstitution of EBV-specific T cell immunity in solid organ transplant recipients. J Immunol. 1998;160(12):6204–9.

    Article  CAS  PubMed  Google Scholar 

  24. Comoli P, Labirio M, Basso S, Baldanti F, Grossi P, Furione M, et al. Infusion of autologous Epstein-Barr virus (EBV)-specific cytotoxic T cells for prevention of EBV-related lymphoproliferative disorder in solid organ transplant recipients with evidence of active virus replication. Blood. 2002;99(7):2592–8.

    Article  CAS  PubMed  Google Scholar 

  25. Savoldo B, Goss JA, Hammer MM, Zhang L, Lopez T, Gee AP, et al. Treatment of solid organ transplant recipients with autologous Epstein Barr virus-specific cytotoxic T lymphocytes (CTLs). Blood. 2006;108(9):2942–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Barker JN, Doubrovina E, Sauter C, Jaroscak JJ, Perales MA, Doubrovin M, et al. Successful treatment of EBV-associated posttransplantation lymphoma after cord blood transplantation using third-party EBV-specific cytotoxic T lymphocytes. Blood. 2010;116(23):5045–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Haque T, Wilkie GM, Jones MM, Higgins CD, Urquhart G, Wingate P, et al. Allogeneic cytotoxic T-cell therapy for EBV-positive posttransplantation lymphoproliferative disease: results of a phase 2 multicenter clinical trial. Blood. 2007;110(4):1123–31.

    Article  CAS  PubMed  Google Scholar 

  28. Vickers MA, Wilkie GM, Robinson N, Rivera N, Haque T, Crawford DH, et al. Establishment and operation of a Good Manufacturing Practice-compliant allogeneic Epstein-Barr virus (EBV)-specific cytotoxic cell bank for the treatment of EBV-associated lymphoproliferative disease. Br J Haematol. 2014;167(3):402–10.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Prockop S, Doubrovina E, Suser S, Heller G, Barker J, Dahi P, et al. Off-the-shelf EBV-specific T cell immunotherapy for rituximab-refractory EBV-associated lymphoma following transplant. J Clin Invest. 2020;130(2):733–47.

  30. Gjerstorff MF, Andersen MH, Ditzel HJ. Oncogenic cancer/testis antigens: prime candidates for immunotherapy. Oncotarget. 2015;6(18):15772–87.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Cho SG, Kim N, Sohn HJ, Lee SK, Oh ST, Lee HJ, et al. Long-term outcome of extranodal NK/T cell lymphoma patients treated with postremission therapy using EBV LMP1 and LMP2a-specific CTLs. Mol Ther. 2015;23(8):1401–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bollard CM, Tripic T, Cruz CR, Dotti G, Gottschalk S, Torrano V, et al. Tumor-specific T-cells engineered to overcome tumor immune evasion induce clinical responses in patients with relapsed Hodgkin lymphoma. J Clin Oncol. 2018;36(11):1128–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McLaughlin LP, Rouce R, Gottschalk S, Torrano V, Carrum G, Wu MF, et al. EBV/LMP-specific T cells maintain remissions of T- and B-cell EBV lymphomas after allogeneic bone marrow transplantation. Blood. 2018;132(22):2351–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pathmanathan R, Prasad U, Chandrika G, Sadler R, Flynn K, Raab-Traub N. Undifferentiated, nonkeratinizing, and squamous cell carcinoma of the nasopharynx. Variants of Epstein-Barr virus-infected neoplasia. Am J Pathol. 1995;146(6):1355–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Prawira A, Oosting SF, Chen TW, Delos Santos KA, Saluja R, Wang L, et al. Systemic therapies for recurrent or metastatic nasopharyngeal carcinoma: a systematic review. Br J Cancer. 2017;117(12):1743–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Young LS, Dawson CW. Epstein-Barr virus and nasopharyngeal carcinoma. Chin J Cancer. 2014;33(12):581–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Tao Q, Young LS, Woodman CB, Murray PG. Epstein-Barr virus (EBV) and its associated human cancers--genetics, epigenetics, pathobiology and novel therapeutics. Front Biosci. 2006;11:2672–713.

    Article  CAS  PubMed  Google Scholar 

  38. Tsai MH, Lin X, Shumilov A, Bernhardt K, Feederle R, Poirey R, et al. The biological properties of different Epstein-Barr virus strains explain their association with various types of cancers. Oncotarget. 2017;8(6):10238–54.

    Article  PubMed  Google Scholar 

  39. Tsai MH, Raykova A, Klinke O, Bernhardt K, Gartner K, Leung CS, et al. Spontaneous lytic replication and epitheliotropism define an Epstein-Barr virus strain found in carcinomas. Cell Rep. 2013;5(2):458–70.

    Article  CAS  PubMed  Google Scholar 

  40. Comoli P, Pedrazzoli P, Maccario R, Basso S, Carminati O, Labirio M, et al. Cell therapy of stage IV nasopharyngeal carcinoma with autologous Epstein-Barr virus-targeted cytotoxic T lymphocytes. J Clin Oncol. 2005;23(35):8942–9.

    Article  CAS  PubMed  Google Scholar 

  41. Louis CU, Straathof K, Bollard CM, Ennamuri S, Gerken C, Lopez TT, et al. Adoptive transfer of EBV-specific T cells results in sustained clinical responses in patients with locoregional nasopharyngeal carcinoma. J Immunother. 2010;33(9):983–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chia WK, Teo M, Wang WW, Lee B, Ang SF, Tai WM, et al. Adoptive T-cell transfer and chemotherapy in the first-line treatment of metastatic and/or locally recurrent nasopharyngeal carcinoma. Mol Ther. 2014;22(1):132–9.

    Article  CAS  PubMed  Google Scholar 

  43. Smith C, Tsang J, Beagley L, Chua D, Lee V, Li V, et al. Effective treatment of metastatic forms of Epstein-Barr virus-associated nasopharyngeal carcinoma with a novel adenovirus-based adoptive immunotherapy. Cancer Res. 2012;72(5):1116–25.

    Article  CAS  PubMed  Google Scholar 

  44. Smith C, Lee V, Schuessler A, Beagley L, Rehan S, Tsang J, et al. Pre-emptive and therapeutic adoptive immunotherapy for nasopharyngeal carcinoma: phenotype and effector function of T cells impact on clinical response. Oncoimmunology. 2017;6(2):e1273311.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Louis CU, Straathof K, Bollard CM, Ennamuri S, Gerken C, Lopez TT, et al. Adoptive transfer of EBV-specific T cells results in sustained clinical responses in patients with locoregional nasopharyngeal carcinoma. J Immunother. 2010;33(9):983–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Secondino S, Zecca M, Licitra L, Gurrado A, Schiavetto I, Bossi P, et al. T-cell therapy for EBV-associated nasopharyngeal carcinoma: preparative lymphodepleting chemotherapy does not improve clinical results. AnnOncol. 2012;23(2):435–41.

    CAS  Google Scholar 

  47. Levitskaya J, Coram M, Levitsky V, Imreh S, Steigerwald-Mullen PM, Klein G, et al. Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature. 1995;375(6533):685–8.

    Article  CAS  PubMed  Google Scholar 

  48. Leskowitz RM, Zhou XY, Villinger F, Fogg MH, Kaur A, Lieberman PM, et al. CD4+ and CD8+ T-cell responses to latent antigen EBNA-1 and lytic antigen BZLF-1 during persistent lymphocryptovirus infection of rhesus macaques. J Virol. 2013;87(15):8351–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Munz C. Epstein-barr virus nuclear antigen 1: from immunologically invisible to a promising T cell target. J Exp Med. 2004;199(10):1301–4.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Voo KS, Fu T, Wang HY, Tellam J, Heslop HE, Brenner MK, et al. Evidence for the presentation of major histocompatibility complex class I-restricted Epstein-Barr virus nuclear antigen 1 peptides to CD8+ T lymphocytes. J Exp Med. 2004;199(4):459–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Icheva V, Kayser S, Wolff D, Tuve S, Kyzirakos C, Bethge W, et al. Adoptive transfer of epstein-barr virus (EBV) nuclear antigen 1-specific t cells as treatment for EBV reactivation and lymphoproliferative disorders after allogeneic stem-cell transplantation. J Clin Oncol. 2013;31(1):39–48.

    Article  CAS  PubMed  Google Scholar 

  52. Ngo MC, Ando J, Leen AM, Ennamuri S, Lapteva N, Vera JF, et al. Complementation of antigen-presenting cells to generate T lymphocytes with broad target specificity. J Immunother. 2014;37(4):193–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gerdemann U, Katari UL, Papadopoulou A, Keirnan JM, Craddock JA, Liu H, et al. Safety and clinical efficacy of rapidly-generated trivirus-directed T cells as treatment for adenovirus, EBV, and CMV infections after allogeneic hematopoietic stem cell transplant. Mol Ther. 2013;21(11):2113–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Papadopoulou A, Gerdemann U, Katari UL, Tzannou I, Liu H, Martinez C, et al. Activity of broad-spectrum T cells as treatment for AdV, EBV, CMV, BKV, and HHV6 infections after HSCT. Science translational medicine. 2014;6(242):242ra83.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kalra M, Gerdemann U, Luu JD, Ngo MC, Leen AM, Louis CU, et al. Epstein-Barr virus (EBV)-derived BARF1 encodes CD4- and CD8-restricted epitopes as targets for T-cell immunotherapy. Cytotherapy. 2019;21(2):212–23.

  56. Cho HI, Kim UH, Shin AR, Won JN, Lee HJ, Sohn HJ, et al. A novel Epstein-Barr virus-latent membrane protein-1-specific T-cell receptor for TCR gene therapy. Br J Cancer. 2018;118(4):534–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mui UN, Haley CT, Tyring SK. Viral oncology: molecular biology and pathogenesis. J Clin Med. 2017;6(12):111.

  58. Tomaic V. Functional roles of E6 and E7 oncoproteins in HPV-induced malignancies at diverse anatomical sites. Cancers (Basel). 2016;8(10):95.

  59. Yim EK, Park JS. The role of HPV E6 and E7 oncoproteins in HPV-associated cervical carcinogenesis. Cancer Res Treat. 2005;37(6):319–24:95.

  60. Doran SL, Stevanovic S, Adhikary S, Gartner JJ, Jia L, Kwong MLM, et al. T-cell receptor gene therapy for human papillomavirus-associated epithelial cancers: a first-in-human, phase I/II study. J Clin Oncol. 2019 ;37(30):2759–68.

  61. Rodig SJ, Cheng J, Wardzala J, DoRosario A, Scanlon JJ, Laga AC, et al. Improved detection suggests all Merkel cell carcinomas harbor Merkel polyomavirus. J Clin Invest. 2012;122(12):4645–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tello TL, Coggshall K, Yom SS, Yu SS. Merkel cell carcinoma: an update and review: current and future therapy. J Am Acad Dermatol. 2018;78(3):445–54.

    Article  PubMed  Google Scholar 

  63. Paulson KG, Voillet V, McAfee MS, Hunter DS, Wagener FD, Perdicchio M, et al. Acquired cancer resistance to combination immunotherapy from transcriptional loss of class I HLA. Nat Commun. 2018;9(1):3868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tindle RW. Immune evasion in human papillomavirus-associated cervical cancer. Nat Rev Cancer. 2002;2(1):59–65.

    Article  CAS  PubMed  Google Scholar 

  65. Thor Straten P, Garrido F. Targetless T cells in cancer immunotherapy. J Immunother Cancer. 2016;4:23.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Coral S, Sigalotti L, Gasparollo A, Cattarossi I, Visintin A, Cattelan A, et al. Prolonged upregulation of the expression of HLA class I antigens and costimulatory molecules on melanoma cells treated with 5-aza-2′-deoxycytidine (5-AZA-CdR). J Immunother. 1999;22(1):16–24.

    Article  CAS  PubMed  Google Scholar 

  67. Srivastava RM, Trivedi S, Concha-Benavente F, Hyun-Bae J, Wang L, Seethala RR, et al. STAT1-induced HLA class I upregulation enhances immunogenicity and clinical response to anti-EGFR mAb cetuximab therapy in HNC patients. Cancer Immunol Res. 2015;3(8):936–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Spiotto M, Fu YX, Weichselbaum RR. The intersection of radiotherapy and immunotherapy: mechanisms and clinical implications. Sci Immunol. 2016;1(3):EAAG1266.

  69. Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol. 2013;13(4):227–42.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Izawa K, Martin E, Soudais C, Bruneau J, Boutboul D, Rodriguez R, et al. Inherited CD70 deficiency in humans reveals a critical role for the CD70-CD27 pathway in immunity to Epstein-Barr virus infection. J Exp Med. 2017;214(1):73–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Abolhassani H, Edwards ES, Ikinciogullari A, Jing H, Borte S, Buggert M, et al. Combined immunodeficiency and Epstein-Barr virus-induced B cell malignancy in humans with inherited CD70 deficiency. J Exp Med. 2017;214(1):91–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shum T. Constitutive signaling from an engineered IL-7 receptor promotes durable tumor elimination by tumor redirected T-cells. Cancer Discov. 2017;7(11):1238–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tang L, Zheng Y, Melo MB, Mabardi L, Castano AP, Xie YQ, et al. Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery. Nat Biotechnol. 2018;36(8):707–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bajgain P, Tawinwung S, D'Elia L, Sukumaran S, Watanabe N, Hoyos V, et al. CAR T cell therapy for breast cancer: harnessing the tumor milieu to drive T cell activation. J Immunother Cancer. 2018;6(1):34.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Mohammed S, Sukumaran S, Bajgain P, Watanabe N, Heslop HE, Rooney CM, et al. Improving chimeric antigen receptor-modified T cell function by reversing the immunosuppressive tumor microenvironment of pancreatic cancer. Mol Ther. 2017;25(1):249–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sukumaran S, Watanabe N, Bajgain P, Raja K, Mohammed S, Fisher WE, et al. Enhancing the potency and specificity of engineered T cells for cancer treatment. Cancer Discov. 2018;8(8):972–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sasaki S, Nishikawa J, Sakai K, Iizasa H, Yoshiyama H, Yanagihara M, et al. EBV-associated gastric cancer evades T-cell immunity by PD-1/PD-L1 interactions. Gastric Cancer. 2019;22(3):486–96.

    Article  CAS  PubMed  Google Scholar 

  78. Liu C, Lu J, Tian H, Du W, Zhao L, Feng J, et al. Increased expression of PDL1 by the human papillomavirus 16 E7 oncoprotein inhibits anticancer immunity. Mol Med Rep. 2017;15(3):1063–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhou Y, Shi D, Miao J, Wu H, Chen J, Zhou X, et al. PD-L1 predicts poor prognosis for nasopharyngeal carcinoma irrespective of PD-1 and EBV-DNA load. Sci Rep. 2017;7:43627.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Fang W, Zhang J, Hong S, Zhan J, Chen N, Qin T, et al. EBV-driven LMP1 and IFN-gamma up-regulate PD-L1 in nasopharyngeal carcinoma: implications for oncotargeted therapy. Oncotarget. 2014;5(23):12189–202.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Kim SJ, Hyeon J, Cho I, Ko YH, Kim WS. Comparison of efficacy of pembrolizumab between Epstein-Barr virus positive and negative relapsed or refractory non-Hodgkin lymphomas. Cancer Res Treat. 2019;51(2):611–22.

    Article  CAS  PubMed  Google Scholar 

  82. Zandberg DP, Algazi AP, Jimeno A, Good JS, Fayette J, Bouganim N, et al. Durvalumab for recurrent or metastatic head and neck squamous cell carcinoma: results from a single-arm, phase II study in patients with >/=25% tumour cell PD-L1 expression who have progressed on platinum-based chemotherapy. Eur J Cancer. 2019;107:142–52.

    Article  CAS  PubMed  Google Scholar 

  83. Morris VK, Salem ME, Nimeiri H, Iqbal S, Singh P, Ciombor K, et al. Nivolumab for previously treated unresectable metastatic anal cancer (NCI9673): a multicentre, single-arm, phase 2 study. Lancet Oncol. 2017;18(4):446–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sung JA, Patel S, Clohosey ML, Roesch L, Tripic T, Kuruc JD, et al. HIV-specific, ex vivo expanded T cell therapy: feasibility, safety, and efficacy in ART-suppressed HIV-infected individuals. Mol Ther. 2018;26(10):2496–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yang H, Wallace Z, Dorrell L. Therapeutic targeting of HIV reservoirs: how to give T cells a new direction. Front Immunol. 2018;9:2861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Patel S, Jones RB, Nixon DF, Bollard CM. T-cell therapies for HIV: preclinical successes and current clinical strategies. Cytotherapy. 2016;18(8):931–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bertoletti A, Brunetto M, Maini MK, Bonino F, Qasim W, Stauss H. T cell receptor-therapy in HBV-related hepatocellularcarcinoma. Oncoimmunology. 2015;4(6):e1008354.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Bertoletti A, Tan AT, Koh S. T-cell therapy for chronic viral hepatitis. Cytotherapy. 2017;19(11):1317–24.

    Article  CAS  PubMed  Google Scholar 

  89. Gehring AJ, Xue SA, Ho ZZ, Teoh D, Ruedl C, Chia A, et al. Engineering virus-specific T cells that target HBV infected hepatocytes and hepatocellular carcinoma cell lines. J Hepatol. 2011;55(1):103–10.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

S. Sharma is supported by CPRIT RP160283 - Baylor College of Medicine Comprehensive Cancer Training Program grant and NIH grants NIH-NCI P50 CA 126752 - SPORE in Lymphoma and FCCICF - NCI Cancer Center Support Grant P30CA16672. W.K. Leung is supported by a Genesis Oncology Trust Murray Jackson Clinical Fellowship and a HSANZ New Investigator Scholarship. H.E. Heslop is supported by NIH grants PO1 CA94237, P50CA12675, a Specialized Center of Research Award from the Leukemia Lymphoma Society, the Dan L Duncan Cancer Canter support grant P30CA125123.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen E Heslop.

Ethics declarations

Conflict of Interest

HEH has ownership interest (including stock, patents, etc.) in Allovir and Marker Therapeutics, and is a consultant/advisory board member for Novartis, Gilead Biosciences, Kiadis, and PACT Pharma and has received commercial research grants from Cell Medica and Tessa Therapeutics. SS and WL have no potential conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

S. Sharma and W. Leung are joint first authors.

This article is part of the Topical Collection on Preclinical and Clinical Cellular Therapies

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Leung, W.K. & Heslop, H.E. Virus-Specific T Cells for the Treatment of Malignancies—Then, Now, and the Future. Curr Stem Cell Rep 6, 17–29 (2020). https://doi.org/10.1007/s40778-020-00170-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40778-020-00170-6

Keywords

Navigation