Skip to main content
Log in

Gravity as the square of gauge theory: a review

  • Review Paper
  • Published:
La Rivista del Nuovo Cimento Aims and scope

Abstract

We briefly review the manifold incarnations and facets of the notion that gravity, in certain regards, can be re-conceived as the product of two gauge theories. We begin with a short history of the relationship between gauge and gravity theories in the context of “\(\hbox {gravity} = \hbox {gauge} \times \hbox {gauge}\)”. This is followed by modern approaches to gauge/gravity scattering amplitude relations, focussing on the Bern–Carrasco–Johansson colour-kinematic duality and double-copy construction of gravitational amplitudes from gauge amplitudes. This includes a partial characterisation of what gravity theories admit a gauge theory squared origin. We then consider classical and off-shell perspectives on “\(\hbox {gravity} =\hbox {gauge} \times \hbox {gauge}\)”. First we review field theoretic approaches to understanding the colour-kinematic duality and the double-copy prescription, including kinematic algebras and colour-kinematic duality and double-copy manifesting Lagrangians. We then consider classical double-copy-like methods for constructing gravitational solutions from gauge theory solutions. To close, we consider a purely field theoretic take on “\(\hbox {gravity} =\hbox {gauge} \times \hbox {gauge}\)”. This framework centres on a convolutive product of gauge theories, at the level of spacetime fields themselves, that yields gravitational theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. For a review of Kaluza–Klein theory see [11].

  2. To be absolutely clear, here we are considering the Yang–Mills theory of the Poincaré group in the strict sense that it is treated as an internal symmetry, in direct analogy to, say, the \(\mathrm{SU}(3)\) of the Standard Model. By “gauged Poincaré” we really do mean a principal bundle P(MG), for G the Poincaré group. Of course, the actual role of the global Poincaré group in a relativistic quantum field theory on \({\mathbb {R}}^{1,d}\) is as a spacetime symmetry. We can also promote this spacetime Poincaré group to be local, as was done in [13]. In this case, the local translations and rotations yield independent general coordinate and local Lorentz transformations. Demanding invariance then leads one, almost inevitably, to general relativity (with matter induced torsion) without invoking, a priori, any Riemannian geometry [13]. While certainly elegant, this seems to us to be gilding the lily somewhat.

  3. Although one is inevitably led back to string theory [25], as with hindsight might have been anticipated from ‘t Hooft’s work on the planar limit of Yang–Mills theory [26].

  4. An excellent account can be found in §7 of the classic reference [35].

  5. In the stringy nomenclature we have the NS–NS (\(\mathbf {8}_v\times \mathbf {8}_v\)), NS-R (\(\mathbf {8}_v\times \mathbf {8}_c\)), R–NS (\(\mathbf {8}_s\times \mathbf {8}_v\)), and R–R (\(\mathbf {8}_s\times \mathbf {8}_c\)) sectors, where NS and R refer to Nevau–Schwarz and Ramond.

  6. On the one hand, this is exactly what one would expect from our stringy intuition based on world-sheet supersymmetry, which is treated democratically in both the open string factors and their closed string product. It is, however, a little counter-intuitive from the spacetime “\(\hbox {gravity} = \hbox {gauge} \times \hbox {gauge}\)” perspective, where we take internal tensor products of spacetime little group representations, but external tensor products of the supersymmetry transformations, despite the fact that they anti-commute to give translations. It all works out, as we shall see.

  7. With possibly distinct gauge groups. The construction did not rely on any particular properties of, or relations amongst, the gauge groups.

  8. See [103] for possible explanations at three loops that nonetheless fail at four loops.

  9. This is only unambiguous for matrix Lie algebras, but the general case is given by the obvious interpretation for an arbitrary Lie bracket \([~, ]:\mathfrak {g}\times \mathfrak {g}\rightarrow \mathfrak {g}\).

  10. An introduction particularly well-suited to the modern treatment of amplitudes is [164]. Coupled with [49] this will bring a graduate student up to speed for most purposes here.

  11. Proceed by induction: clearly true for \(n=3\). At n-points each graph has \(2n-3\) edges to which one can add an edge to give \(2n-3\) new \((n+1)\)-point graphs. Hence, assuming there are \((2m-5)!!\) graphs at n-points, there are \((2n-3)(2n-5)!!=(2(n+1)-5)!!\) graphs at \((n+1)\)-points.

  12. As an example, for the s-channel we have

    $$\begin{aligned} n_s=4\big ( \varepsilon _{1}\cdot p_{2} \varepsilon _{2 \lambda }-\varepsilon _{2}\cdot p_{1} \varepsilon _{1 \lambda } +\tfrac{1}{2}\varepsilon _{1}\cdot \varepsilon _{2} p_{12\lambda }\big )\big ( \varepsilon _{3}\cdot p_{4} \varepsilon _{4}^{\lambda }-\varepsilon _{4}\cdot p_{3} \varepsilon _{1}^{\lambda }+\tfrac{1}{2}\varepsilon _{3}\cdot \varepsilon _{4} p_{34}^{\lambda }\big ). \end{aligned}$$

    Of course, fixing the helicities and making some sensible choices for the polarisations, this can be significantly simplified.

  13. Note, the Kleiss–Kuijf relations [17, 18] hold if the colour-ordered partial amplitudes are written as a sum of numerators satisfying this condition.

  14. We shall see momentarily that BCJ duality implies that this \((n-2)!\)-dimensional basis is over complete, but let us not put the cart before the horse.

  15. One could demand that it is a Moore–Penrose pseudo-inverse, which always exists and is unique, picking out one particular solution.

  16. The \(c_i\) should not be explicitly evaluated under the integral in case they accidentally vanish before being replaced by the loop-momenta dependent kinematic factors.

  17. We are measuring complexity in terms of how simple it is to fully characterise the space of theories of interest: \({\mathcal {N}}=8\) supergravity is unique and determined by supersymmetry alone, as simple as can be, whereas the space of non-supersymmetric theories containing Einstein–Hilbert gravity is wild, even with reasonable consistency conditions imposed.

  18. But not supergravity, the analog in this case is \({\mathcal {N}}=7\) supersymmetry implies \({\mathcal {N}}=8\).

  19. \({\mathcal {N}}=2\) supergravity coupled to a single vector multiplet with non-compact global symmetry group \(\mathrm{SL}(2, {\mathbb {R}})\), under which the two Maxwell field strengths and their duals transform as the \(\mathbf {4}\) [246, 247]. Can be regarded as the “symmetrisation” of the STU model [248], where the there complex scalars STU are identified.

  20. But see final point of this list.

  21. Twin supergravities are pairs of supergravity theories with identical bosonic sectors but distinct supersymmetric completions [81, 245, 254,255,256,257,258].

  22. This may be trivially true, for example a cubic theory of scalars transforming in the adjoint of a global symmetry.

  23. As it stands this can of course only be established in general at tree-level, with supporting evidence from case-by-case examples of loop-level amplitudes. Our present analysis is explicitly tree-level only.

  24. Of course, for tree-level amplitudes they may be consistently truncated to leave only the graviton scattering amplitudes of Einstein–Hilbert gravity.

  25. This follows from the requirement that the spectator is the convolutive pseudo-inverse of the \(\phi ^3\) field: \(\phi \cdot \Phi \cdot \phi = \phi \) implies \([\Phi ]=(3D+2)/2\).

  26. Through the equations of motion this implies a mildly non-local relationship between the gauge and gravity sources [302]. Turning this around, imposing a simple gauge/gravity source dictionary, the equations of motion force non-local terms into the field dictionary [141].

  27. The quantisation of the KB 2-form requires the full machinery of the BV formalism. See [156, 157, 303] for detailed accounts, the latter in the context of “\(\hbox {gravity} =\hbox {gauge} \times \hbox {gauge}\)”.

  28. We stop at \(D=3\), which has \(E_{8(8)}\) U-duality, the largest finite dimensional exceptional Lie algebra. One can continue to \(D=2,1,0\), invoking the infinite dimensional extended algebras \(E_{9(9)}, E_{10(10)}, E_{11(11)}\) [313,314,315,316]. Although we will not discuss theses cases here, it would be interesting to investigate if they can be understood from the perspective of Yang–Mills squared.

  29. It might be elucidating to not identify the spacetime symmetries. For example, one can reformulate the \({\mathcal {N}}=0\) supergravity action so as to have manifest left and right Lorentz symmetries [281, 284]. Nonetheless, from the point of view of spectrum matching and global symmetries we should identify the spacetime little groups.

  30. It is tempting to spectulate that this modification is related to the spectator scalar of the field product.

  31. We must retain the homogenous assumption. In fact, as far as we are aware there are as yet no examples of double-copy constructible supergravity theories without homogenous scalar manifolds, despite there ubiquity for \({\mathcal {N}}\le 2\).

  32. As far as we are aware the first instance in this context.

  33. A quadratic norm on a vector space V over a field \({\mathbb {R}}\) is a map \({\mathbf {n}}:V\rightarrow {\mathbb {R}}\) such that: (1) \({\mathbf {n}}(\lambda a)=\lambda ^2{\mathbf {n}}(a), \lambda \in {\mathbb {R}}, a\in V\) and (2) \( \langle a, b\rangle :={\mathbf {n}}(a+b)-{\mathbf {n}}(a)-{\mathbf {n}}(b) \) is bilinear.

  34. One way to understand this is in terms of Jordan algebras. Points in \({\mathbb {O}}\mathbb {P}^2\) are bijectively identified with trace 1 projectors in \(\mathfrak {J}_{3}^{{\mathbb {O}}}\), the Jordan algebra of \(3\times 3\) octonionic Hermitian matrices. However, for \(m>3\), \(m\times m\) octonionic Hermitian matrices do not form a Jordan algebra.

  35. Non-associativity, however, implies that the line through the origin containing the point (ab) is not given by \(\{(\alpha a, \alpha b) | \alpha \in {\mathbb {O}}\}\), unless \(x=1\) or \(y=1\). This obstacle is easily avoided as all non-zero octonions have an inverse; (ab) is equivalent to \((b^{-1}a, 1)\) or \((1, a^{-1}b)\) for \(b\not =0\) or \(a\not =0\), giving two charts with a smooth transition function on their overlap. See [195].

  36. Note, the additional factors are given by intermediate algebras: \(\mathfrak {tri}({\mathbb {A}})\ominus \mathfrak {int} ({\mathbb {A}})=\emptyset , \mathfrak {u}(1), \mathfrak {sp}(1), \emptyset \) for \({\mathbb {A}}={\mathbb {R}}, {\mathbb {C}}, {\mathbb {H}}, {\mathbb {O}}\) [196].

  37. The objects \(1_{\pm }\) act as projection operators dividing \({\mathbb {C}}\otimes {\mathbb {C}}\) into two 2-dimensional subspaces, on which \(i_{\pm }\) act as complex structures, so that \({\mathbb {C}}\otimes {\mathbb {C}}\cong {\mathbb {C}}\oplus {\mathbb {C}}\).

References

  1. S.W. Hawking, Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975)

    ADS  MathSciNet  MATH  Google Scholar 

  2. S.W. Hawking, Black holes and thermodynamics. Phys. Rev. D 13, 191–197 (1976)

    ADS  Google Scholar 

  3. G. ’t Hooft, M.J.G. Veltman, One loop divergencies in the theory of gravitation. Ann. Inst. His. Poincare Phys. Theor. A 20, 69–94 (1974)

    ADS  MathSciNet  MATH  Google Scholar 

  4. S. Deser, P. van Nieuwenhuizen, Nonrenormalizability of the quantized Einstein–Maxwell system. Phys. Rev. Lett. 32, 245–247 (1974)

    ADS  Google Scholar 

  5. S. Deser, P. van Nieuwenhuizen, Nonrenormalizability of the quantized Dirac–Einstein system. Phys. Rev. D 10, 411 (1974)

    ADS  MathSciNet  Google Scholar 

  6. M.H. Goroff, A. Sagnotti, Quantum gravity at two loops. Phys. Lett. B 160, 81–86 (1985)

    ADS  Google Scholar 

  7. M.H. Goroff, A. Sagnotti, The ultraviolet behavior of Einstein gravity. Nucl. Phys. B 266, 709–736 (1986)

    ADS  Google Scholar 

  8. T. Kaluza, Zum Unitätsproblem der Physik. Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1921, 966–972 (1921). arXiv:1803.08616 [physics.hist-ph]. [Int. J. Mod. Phys. D 27(14), 1870001 (2018)]

  9. O. Klein, Quantum theory and five-dimensional theory of relativity. (In German and English). Z. Phys. 37, 895–906 (1926). [76(1926)]

  10. O. Klein, The atomicity of electricity as a quantum theory law. Nature 118, 516 (1926)

    ADS  Google Scholar 

  11. M.J. Duff, B.E.W. Nilsson, C.N. Pope, Kaluza–Klein supergravity. Phys. Rept. 130, 1–142 (1986)

    ADS  MathSciNet  Google Scholar 

  12. R. Utiyama, Invariant theoretical interpretation of interaction. Phys. Rev. 101, 1597–1607 (1956)

    ADS  MathSciNet  MATH  Google Scholar 

  13. T.W.B. Kibble, Lorentz invariance and the gravitational field. J. Math. Phys. 2, 212–221 (1961)

    ADS  MathSciNet  MATH  Google Scholar 

  14. S.W. MacDowell, F. Mansouri, Unified geometric theory of gravity and supergravity. Phys. Rev. Lett. 38, 739–742 (1977)

    ADS  MathSciNet  Google Scholar 

  15. A.H. Chamseddine, P.C. West, Supergravity as a gauge theory of supersymmetry. Nucl Phys. B 129, 39–44 (1977)

    ADS  Google Scholar 

  16. K.S. Stelle, P.C. West, de Sitter gauge invariance and the geometry of the Einstein–Cartan theory. J. Phys. A Math. Gen. 12, L205–L210 (1979)

    ADS  MathSciNet  Google Scholar 

  17. S. W. MacDowell, F. Mansouri, Unified geometric theory of gravity and supergravity. Phys. Rev. Lett. 38, 739 (1977). [Erratum: Phys. Rev. Lett. 38, 1376 (1977)]

  18. M. Kaku, P. K. Townsend, P. van Nieuwenhuizen, Properties of conformal supergravity. Phys. Rev. D 17, 3179 (1978). [853(1978)]

  19. K.S. Stelle, P.C. West, Spontaneously broken De Sitter symmetry and the gravitational holonomy group. Phys. Rev. D 21, 1466 (1980)

    ADS  MathSciNet  Google Scholar 

  20. G. Hooft, Dimensional reduction in quantum gravity. Salamfestschr. Collect. Talks 4(A), 1–13 (1994). arXiv:gr-qc/9310026

    Google Scholar 

  21. L. Susskind, The World as a hologram. J. Math. Phys. 36, 6377–6396 (1995). arXiv:hep-th/9409089 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  22. J.M. Maldacena, The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231–252 (1998). arXiv:hep-th/9711200

    ADS  MathSciNet  MATH  Google Scholar 

  23. S. Gubser, I.R. Klebanov, A.M. Polyakov, Gauge theory correlators from noncritical string theory. Phys. Lett. B 428, 105–114 (1998). arXiv:hep-th/9802109 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  24. E. Witten, Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253–291 (1998). arXiv:hep-th/9802150 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  25. D.E. Berenstein, J.M. Maldacena, H.S. Nastase, Strings in flat space and pp waves from \(\text{ N }=4\) super Yang–Mills. JHEP 04, 013 (2002). arXiv:hep-th/0202021 [hep-th]

    ADS  MathSciNet  Google Scholar 

  26. G. ’t Hooft, A planar diagram theory for strong interactions. Nucl. Phys. B 72, 461 (1974). [337(1973)]

  27. G.T. Horowitz, J. Polchinski, Gauge/gravity duality, in Approaches to Quantum Gravity: Toward a New Understanding of Space, Time and Matter, ed. by D. Oriti (Cambridge University Press, Cambridge, 2006), pp. 169–186. arXiv:gr-qc/0602037 [gr-qc]

    Google Scholar 

  28. V.E. Hubeny, The AdS/CFT correspondence. Class. Quant. Gravit. 32(12), 124010 (2015). arXiv:1501.00007 [gr-qc]

    ADS  MathSciNet  MATH  Google Scholar 

  29. P. Jordan, Zur neutrinotheorie des lichtes. Zeitschrift für Physik 93(7–8), 464–472 (1935)

    ADS  MATH  Google Scholar 

  30. R.P. Feynman, F.B. Morinigo, W.G. Wagner, Feynman Lectures on Gravitation (CRC Press, New York, 2018)

    Google Scholar 

  31. G. Papini, Photon bound states and gravitons. Il Nuovo Cimento (1955–1965) 39, 716–726 (1965). https://doi.org/10.1007/BF02735838

    Article  MathSciNet  Google Scholar 

  32. H. Terazawa, Y. Chikashige, K. Akama, T. Matsuki, Simple relation between the fine structure and gravitational constants. Phys. Rev. D 15, 1181 (1977)

    ADS  Google Scholar 

  33. S. Weinberg, E. Witten, Limits on massless particles. Phys. Lett. B 96, 59–62 (1980)

    ADS  MathSciNet  Google Scholar 

  34. H. Kawai, D. Lewellen, S. Tye, A relation between tree amplitudes of closed and open strings. Nucl. Phys. B 269, 1 (1986)

    ADS  MathSciNet  Google Scholar 

  35. M.B. Green, J.H. Schwarz, E. Witten, Superstring theory vol. 1: Introduction. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge, p. 469 (1987)

  36. L. Brink, J.H. Schwarz, J. Scherk, Supersymmetric Yang–Mills theories. Nucl. Phys. B 121, 77–92 (1977)

    ADS  MathSciNet  Google Scholar 

  37. M.A. Virasoro, Alternative constructions of crossing-symmetric amplitudes with regge behavior. Phys. Rev. 177, 2309–2311 (1969)

    ADS  MathSciNet  Google Scholar 

  38. J.A. Shapiro, Narrow-resonance model with regge behavior for pi pi scattering. Phys. Rev. 179, 1345–1353 (1969)

    ADS  Google Scholar 

  39. G. Veneziano, Construction of a crossing—symmetric, Regge behaved amplitude for linearly rising trajectories. Nuovo Cim. A57, 190–197 (1968)

    ADS  Google Scholar 

  40. Z. Bern, D.C. Dunbar, T. Shimada, String based methods in perturbative gravity. Phys. Lett. B 312, 277–284 (1993). arXiv:hep-th/9307001 [hep-th]

    ADS  Google Scholar 

  41. Z. Bern, L.J. Dixon, D.C. Dunbar, D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits. Nucl. Phys. B 425, 217–260 (1994). arXiv:hep-ph/9403226 [hep-ph]

    ADS  MathSciNet  MATH  Google Scholar 

  42. Z. Bern, L.J. Dixon, D.C. Dunbar, D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes. Nucl. Phys. B 435, 59–101 (1995). arXiv:hep-ph/9409265 [hep-ph]

    ADS  Google Scholar 

  43. Z. Bern, A.G. Morgan, Massive loop amplitudes from unitarity. Nucl. Phys. B 467, 479–509 (1996). arXiv:hep-ph/9511336 [hep-ph]

    ADS  Google Scholar 

  44. L.J. Dixon, Calculating scattering amplitudes efficiently. In: QCD and beyond, proceedings, theoretical advanced study institute in elementary particle physics, TASI-95, Boulder, pp. 539–584 (1996). arXiv:hep-ph/9601359 [hep-ph]. http://www-public.slac.stanford.edu/sciDoc/docMeta.aspx?slacPubNumber=SLAC-PUB-7106

  45. Z. Bern, L.J. Dixon, D.A. Kosower, Progress in one loop QCD computations. Ann. Rev. Nucl. Part. Sci. 46, 109–148 (1996). arXiv:hep-ph/9602280 [hep-ph]

    ADS  Google Scholar 

  46. R. Britto, Loop amplitudes in gauge theories: modern analytic approaches. J. Phys. A 44, 454006 (2011). arXiv:1012.4493 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  47. Z. Bern, Y.-T. Huang, Basics of generalized unitarity. J. Phys. A 44, 454003 (2011). arXiv:1103.1869 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  48. Z. Bern, L.J. Dixon, D.C. Dunbar, M. Perelstein, J.S. Rozowsky, On the relationship between Yang–Mills theory and gravity and its implication for ultraviolet divergences. Nucl. Phys. B 530, 401–456 (1998). arXiv:hep-th/9802162 [hep-th]

    ADS  Google Scholar 

  49. H. Elvang, Y.-T. Huang, Scattering amplitudes in gauge theory and gravity. Cambridge University Press, Cambridge (2015). http://www.cambridge.org/mw/academic/subjects/physics/theoretical-physics-and-mathematical-physics/scattering-amplitudes-gauge-theory-and-gravity?format=AR

  50. Z. Bern, J. Carrasco, H. Johansson, New relations for gauge-theory amplitudes. Phys. Rev. D 78, 085011 (2008). arXiv:0805.3993 [hep-ph]

    ADS  MathSciNet  Google Scholar 

  51. Z. Bern, J.J.M. Carrasco, H. Johansson, Perturbative quantum gravity as a double copy of gauge theory. Phys. Rev. Lett. 105, 061602 (2010). arXiv:1004.0476 [hep-th]

    ADS  MathSciNet  Google Scholar 

  52. M. Kiermaier, Gravity as the square of gauge theory. Amplitudes 2010, Queen Mary, University of London (2010). https://strings.ph.qmul.ac.uk/~theory/Amplitudes2010/Talks/MK2010.pdf

  53. N.E.J. Bjerrum-Bohr, P.H. Damgaard, T. Sondergaard, P. Vanhove, The momentum kernel of gauge and gravity theories. JHEP 01, 001 (2011). arXiv:1010.3933 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  54. C.R. Mafra, O. Schlotterer, S. Stieberger, Explicit BCJ numerators from pure spinors. JHEP 07, 092 (2011). arXiv:1104.5224 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  55. Y.-J. Du, C.-H. Fu, Explicit BCJ numerators of nonlinear simga model. JHEP 09, 174 (2016). arXiv:1606.05846 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  56. Z. Bern, J.J. Carrasco, L.J. Dixon, H. Johansson, R. Roiban, The ultraviolet behavior of \(\text{ N }=8\) supergravity at four loops. Phys. Rev. Lett. 103, 081301 (2009). arXiv:0905.2326 [hep-th]

    ADS  Google Scholar 

  57. Z. Bern, S. Davies, T. Dennen, Enhanced ultraviolet cancellations in \({\cal{N}}=5\) supergravity at four loops. Phys. Rev. D 90(10), 105011 (2014). arXiv:1409.3089 [hep-th]

    ADS  Google Scholar 

  58. J.J. Carrasco, H. Johansson, Five-point amplitudes in \(\text{ N }=4\) super-Yang–Mills theory and \(\text{ N }=8\) supergravity. Phys. Rev. D 85, 025006 (2012). arXiv:1106.4711 [hep-th]

    ADS  Google Scholar 

  59. S. Oxburgh, C.D. White, BCJ duality and the double copy in the soft limit. JHEP 02, 127 (2013). arXiv:1210.1110 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  60. Z. Bern, J.J.M. Carrasco, L.J. Dixon, H. Johansson, R. Roiban, Simplifying multiloop integrands and ultraviolet divergences of gauge theory and gravity amplitudes. Phys. Rev. D 85, 105014 (2012). arXiv:1201.5366 [hep-th]

    ADS  Google Scholar 

  61. Y.-J. Du, H. Luo, On general BCJ relation at one-loop level in Yang–Mills theory. JHEP 01, 129 (2013). arXiv:1207.4549 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  62. E.Y. Yuan, Virtual color-kinematics duality: 6-pt 1-loop MHV amplitudes. JHEP 05, 070 (2013). arXiv:1210.1816 [hep-th]

    ADS  Google Scholar 

  63. R.H. Boels, R.S. Isermann, R. Monteiro, D. O’Connell, Colour-kinematics duality for one-loop rational amplitudes. JHEP 04, 107 (2013). arXiv:1301.4165 [hep-th]

    ADS  MathSciNet  Google Scholar 

  64. Z. Bern, T. Dennen, Y.-T. Huang, M. Kiermaier, Gravity as the square of gauge theory. Phys. Rev. D 82, 065003 (2010). arXiv:1004.0693 [hep-th]

    ADS  Google Scholar 

  65. Z. Bern, J.J.M. Carrasco, L.J. Dixon, H. Johansson, R. Roiban, The complete four-loop four-point amplitude in \(\text{ N }=4\) Super–Yang–Mills theory. Phys. Rev. D 82, 125040 (2010). arXiv:1008.3327 [hep-th]

    ADS  Google Scholar 

  66. M. Chiodaroli, M. Gunaydin, R. Roiban, Superconformal symmetry and maximal supergravity in various dimensions. JHEP 1203, 093 (2012). arXiv:1108.3085 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  67. Z. Bern, S. Davies, T. Dennen, Y.-T. Huang, Ultraviolet cancellations in half-maximal supergravity as a consequence of the double-copy structure. Phys. Rev. D 86, 105014 (2012). arXiv:1209.2472 [hep-th]

    ADS  Google Scholar 

  68. J.J.M. Carrasco, M. Chiodaroli, M. Günaydin, R. Roiban, One-loop four-point amplitudes in pure and matter-coupled \(\text{ N }=4\) supergravity. JHEP 1303, 056 (2013). arXiv:1212.1146 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  69. P.H. Damgaard, R. Huang, T. Sondergaard, Y. Zhang, The complete KLT-map between gravity and gauge theories. JHEP 1208, 101 (2012). arXiv:1206.1577 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  70. Y.-T. Huang, H. Johansson, Equivalent \(\text{ D }=3\) supergravity amplitudes from double copies of three-algebra and two-algebra gauge theories. Phys. Rev. Lett. 110, 171601 (2013). arXiv:1210.2255 [hep-th]

    ADS  Google Scholar 

  71. T. Bargheer, S. He, T. McLoughlin, New relations for three-dimensional supersymmetric scattering amplitudes. Phys. Rev. Lett. 108, 231601 (2012). arXiv:1203.0562 [hep-th]

    ADS  Google Scholar 

  72. J.J.M. Carrasco, R. Kallosh, R. Roiban, A.A. Tseytlin, On the U(1) duality anomaly and the S-matrix of \(\text{ N }=4\) supergravity. JHEP 07, 029 (2013). arXiv:1303.6219 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  73. M. Chiodaroli, Q. Jin, R. Roiban, Color/kinematics duality for general abelian orbifolds of \(\text{ N }=4\) super Yang–Mills theory. JHEP 01, 152 (2014). arXiv:1311.3600 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  74. H. Johansson, A. Ochirov, Pure gravities via color-kinematics duality for fundamental matter. JHEP 11, 046 (2015). arXiv:1407.4772 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  75. M. Chiodaroli, M. Günaydin, H. Johansson, R. Roiban, Scattering amplitudes in \({\cal{N}}=2\) Maxwell–Einstein and Yang–Mills/Einstein supergravity. JHEP 01, 081 (2015). arXiv:1408.0764 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  76. M. Chiodaroli, M. Gunaydin, H. Johansson, R. Roiban, Spontaneously broken Yang–Mills–Einstein supergravities as double copies. JHEP 06, 064 (2017). arXiv:1511.01740 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  77. M. Chiodaroli, M. Gunaydin, H. Johansson, R. Roiban, Complete construction of magical, symmetric and homogeneous \(\text{ N }=2\) supergravities as double copies of gauge theories. Phys. Rev. Lett. 117(1), 011603 (2016). arXiv:1512.09130 [hep-th]

    ADS  Google Scholar 

  78. M. Chiodaroli, Simplifying amplitudes in Maxwell–Einstein and Yang–Mills–Einstein supergravities. (2016). arXiv:1607.04129 [hep-th]. https://inspirehep.net/record/1475711/files/arXiv:1607.04129.pdf

  79. J.J.M. Carrasco, C.R. Mafra, O. Schlotterer, Semi-abelian Z-theory: \(\text{ NLSM }+^{3}\) from the open string. JHEP 08, 135 (2017). arXiv:1612.06446 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  80. J.J.M. Carrasco, C.R. Mafra, O. Schlotterer, Abelian Z-theory: NLSM amplitudes and \(\alpha \)’-corrections from the open string. JHEP 06, 093 (2017). arXiv:1608.02569 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  81. A. Anastasiou, L. Borsten, M.J. Duff, M.J. Hughes, A. Marrani, S. Nagy, M. Zoccali, Twin supergravities from Yang–Mills theory squared. Phys. Rev. D 96(2), 026013 (2017). arXiv:1610.07192 [hep-th]

    ADS  MathSciNet  Google Scholar 

  82. H. Johansson, G. Kälin, G. Mogull, Two-loop supersymmetric QCD and half-maximal supergravity amplitudes. JHEP 09, 019 (2017). arXiv:1706.09381 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  83. H. Johansson, J. Nohle, Conformal gravity from gauge theory. arXiv:1707.02965 [hep-th]

  84. T. Azevedo, O.T. Engelund, Ambitwistor formulations of \(R^2\) gravity and \((DF)^2\) gauge theories. arXiv:1707.02192 [hep-th]

  85. A. Anastasiou, L. Borsten, M.J. Duff, A. Marrani, S. Nagy, M. Zoccali, Are all supergravity theories Yang–Mills squared? Nucl. Phys. B 934, 606–633 (2018). arXiv:1707.03234 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  86. M. Chiodaroli, M. Gunaydin, H. Johansson, R. Roiban, Explicit formulae for Yang–Mills–Einstein amplitudes from the double copy. JHEP 07, 002 (2017). arXiv:1703.00421 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  87. M. Chiodaroli, M. Gunaydin, H. Johansson, R. Roiban, Gauged supergravities and spontaneous supersymmetry breaking from the double copy construction. Phys. Rev. Lett. 120(17), 171601 (2018). arXiv:1710.08796 [hep-th]

    ADS  MathSciNet  Google Scholar 

  88. M. Chiodaroli, M. Günaydin, H. Johansson, R. Roiban, Non-abelian gauged supergravities as double copies. JHEP 06, 099 (2019). arXiv:1812.10434 [hep-th]

    MathSciNet  MATH  Google Scholar 

  89. T. Azevedo, M. Chiodaroli, H. Johansson, O. Schlotterer, Heterotic and bosonic string amplitudes via field theory. JHEP 10, 012 (2018). arXiv:1803.05452 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  90. Z. Bern, S. Davies, T. Dennen, Y.-T. Huang, Absence of three-loop four-point divergences in \(\text{ N }=4\) supergravity. Phys. Rev. Lett. 108, 201301 (2012). arXiv:1202.3423 [hep-th]

    ADS  Google Scholar 

  91. Z. Bern, S. Davies, T. Dennen, The ultraviolet structure of half-maximal supergravity with matter multiplets at two and three loops. Phys. Rev. D 88, 065007 (2013). arXiv:1305.4876 [hep-th]

    ADS  Google Scholar 

  92. Z. Bern, S. Davies, T. Dennen, A.V. Smirnov, V.A. Smirnov, Ultraviolet properties of \(\text{ N }=4\) supergravity at four loops. Phys. Rev. Lett. 111(23), 231302 (2013). arXiv:1309.2498 [hep-th]

    ADS  Google Scholar 

  93. Z. Bern, S. Davies, T. Dennen, The ultraviolet critical dimension of half-maximal supergravity at three loops. arXiv:1412.2441 [hep-th]

  94. Z. Bern, C. Cheung, H.-H. Chi, S. Davies, L. Dixon, J. Nohle, Evanescent effects can alter ultraviolet divergences in quantum gravity without physical consequences. Phys. Rev. Lett. 115(21), 211301 (2015). arXiv:1507.06118 [hep-th]

    ADS  Google Scholar 

  95. Z. Bern, J.J. Carrasco, W.-M. Chen, A. Edison, H. Johansson, J. Parra-Martinez, R. Roiban, M. Zeng, Ultraviolet properties of \({\cal{N}} =8\) supergravity at five loops. arXiv:1804.09311 [hep-th]

  96. S. Deser, J.H. Kay, K.S. Stelle, Renormalizability properties of supergravity. Phys. Rev. Lett. 38, 527 (1977). arXiv:1506.03757 [hep-th]

    ADS  Google Scholar 

  97. P.S. Howe, K. Stelle, The ultraviolet properties of supersymmetric field theories. Int. J. Mod. Phys. A 4, 1871 (1989)

    ADS  MathSciNet  Google Scholar 

  98. M.B. Green, J.G. Russo, P. Vanhove, String theory dualities and supergravity divergences. JHEP 1006, 075 (2010). arXiv:1002.3805 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  99. G. Bossard, P. Howe, K. Stelle, On duality symmetries of supergravity invariants. JHEP 1101, 020 (2011). arXiv:1009.0743 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  100. N. Beisert, H. Elvang, D.Z. Freedman, M. Kiermaier, A. Morales et al., E7(7) constraints on counterterms in \(\text{ N }=8\) supergravity. Phys. Lett. B 694, 265–271 (2010). arXiv:1009.1643 [hep-th]

    ADS  MathSciNet  Google Scholar 

  101. G. Bossard, P. Howe, K. Stelle, P. Vanhove, The vanishing volume of \(\text{ D }=4\) superspace. Class. Quant. Gravit. 28, 215005 (2011). arXiv:1105.6087 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  102. G. Bossard, P.S. Howe, K.S. Stelle, Anomalies and divergences in \(\text{ N }=4\) supergravity. Phys. Lett. B 719, 424–429 (2013). arXiv:1212.0841 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  103. D.Z. Freedman, R. Kallosh, Y. Yamada, Duality constraints on counterterms in supergravities. Fortsch. Phys. 66(10), 1800054 (2018). arXiv:1807.06704 [hep-th]

    MathSciNet  Google Scholar 

  104. Z. Bern, J.J.M. Carrasco, W.-M. Chen, H. Johansson, R. Roiban, M. Zeng, Five-loop four-point integrand of \(N=8\) supergravity as a generalized double copy. Phys. Rev. D 96(12), 126012 (2017). arXiv:1708.06807 [hep-th]

    ADS  MathSciNet  Google Scholar 

  105. Z. Bern, L.J. Dixon, R. Roiban, Is \(\text{ N }=8\) supergravity ultraviolet finite? Phys. Lett. B 644, 265–271 (2007). arXiv:hep-th/0611086

    ADS  MathSciNet  MATH  Google Scholar 

  106. G. Bossard, C. Hillmann, H. Nicolai, E7(7) symmetry in perturbatively quantised \(\text{ N }=8\) supergravity. JHEP 12, 052 (2010). arXiv:1007.5472 [hep-th]

    ADS  MATH  Google Scholar 

  107. R. Kallosh, \(E_{7(7)}\) symmetry and finiteness of \(\text{ N }=8\) supergravity. JHEP 03, 083 (2012). arXiv:1103.4115 [hep-th]

    ADS  MATH  Google Scholar 

  108. R. Kallosh, T. Ortin, New E77 invariants and amplitudes. JHEP 1209, 137 (2012). arXiv:1205.4437 [hep-th]

    ADS  MATH  Google Scholar 

  109. R. Monteiro, D. O’Connell, C.D. White, Black holes and the double copy. JHEP 1412, 056 (2014). arXiv:1410.0239 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  110. A. Luna, R. Monteiro, D. O’Connell, C.D. White, The classical double copy for Taub-NUT spacetime. Phys. Lett. B 750, 272–277 (2015). arXiv:1507.01869 [hep-th]

    ADS  MATH  Google Scholar 

  111. A.K. Ridgway, M.B. Wise, Static spherically symmetric Kerr–Schild metrics and implications for the classical double copy. Phys. Rev. D D94(4), 044023 (2016). arXiv:1512.02243 [hep-th]

    ADS  MathSciNet  Google Scholar 

  112. A. Luna, R. Monteiro, I. Nicholson, D. O’Connell, C.D. White, The double copy: Bremsstrahlung and accelerating black holes. JHEP 06, 023 (2016). arXiv:1603.05737 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  113. C.D. White, Exact solutions for the biadjoint scalar field. Phys. Lett. B 763, 365–369 (2016). arXiv:1606.04724 [hep-th]

    ADS  MATH  Google Scholar 

  114. W.D. Goldberger, A.K. Ridgway, Radiation and the classical double copy for color charges. Phys. Rev. D 95(12), 125010 (2017). arXiv:1611.03493 [hep-th]

    ADS  MathSciNet  Google Scholar 

  115. G.L. Cardoso, S. Nagy, S. Nampuri, A double copy for \({\cal{N}}=2 \) supergravity: a linearised tale told on-shell. JHEP 10, 127 (2016). arXiv:1609.05022 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  116. G. Cardoso, S. Nagy, S. Nampuri, Multi-centered \({\cal{N}}=2 \) BPS black holes: a double copy description. JHEP 04, 037 (2017). arXiv:1611.04409 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  117. A. Luna, R. Monteiro, I. Nicholson, A. Ochirov, D. O’Connell, N. Westerberg, C.D. White, Perturbative spacetimes from Yang–Mills theory. JHEP 04, 069 (2017). arXiv:1611.07508 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  118. W.D. Goldberger, S.G. Prabhu, J.O. Thompson, Classical gluon and graviton radiation from the bi-adjoint scalar double copy. Phys. Rev. D 96(6), 065009 (2017). arXiv:1705.09263 [hep-th]

    ADS  MathSciNet  Google Scholar 

  119. G. Lopes Cardoso, G. Inverso, S. Nagy, S. Nampuri, Comments on the double copy construction for gravitational theories. In 17th Hellenic School and Workshops on Elementary Particle Physics and Gravity (CORFU2017) Corfu, Greece, September 2-28, 2017 (2018). arXiv:1803.07670 [hep-th]. http://inspirehep.net/record/1663475/files/1803.07670.pdf

  120. A. Luna, I. Nicholson, D. O’Connell, C.D. White, Inelastic black hole scattering from charged scalar amplitudes. JHEP 03, 044 (2018). arXiv:1711.03901 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  121. N. Bahjat-Abbas, A. Luna, C.D. White, The Kerr–Schild double copy in curved spacetime. JHEP 12, 004 (2017). arXiv:1710.01953 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  122. D.S. Berman, E. Chacón, A. Luna, C.D. White, The self-dual classical double copy, and the Eguchi–Hanson instanton. JHEP 01, 107 (2019). arXiv:1809.04063 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  123. J. Plefka, J. Steinhoff, W. Wormsbecher, Effective action of dilaton gravity as the classical double copy of Yang–Mills theory. Phys. Rev. D 99(2), 024021 (2019). arXiv:1807.09859 [hep-th]

    ADS  MathSciNet  Google Scholar 

  124. N. Bahjat-Abbas, R. Stark-Muchão, C.D. White, Biadjoint wires. Phys. Lett. B 788, 274–279 (2019). arXiv:1810.08118 [hep-th]

    ADS  MATH  Google Scholar 

  125. A. Luna, R. Monteiro, I. Nicholson, D. O’Connell, Type D spacetimes and the weyl double copy. Class. Quant. Gravit. 36, 065003 (2019). arXiv:1810.08183 [hep-th]

    ADS  MathSciNet  Google Scholar 

  126. C.-H. Shen, Gravitational radiation from Color-kinematics duality. JHEP 11, 162 (2018). arXiv:1806.07388 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  127. C. Cheung, I.Z. Rothstein, M.P. Solon, From scattering amplitudes to classical potentials in the post-Minkowskian expansion. Phys. Rev. Lett. 121(25), 251101 (2018). arXiv:1808.02489 [hep-th]

    ADS  Google Scholar 

  128. D.A. Kosower, B. Maybee, D. O’Connell, Amplitudes, observables, and classical scattering. JHEP 02, 137 (2019). arXiv:1811.10950 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  129. M. Carrillo González, B. Melcher, K. Ratliff, S. Watson, C.D. White, The classical double copy in three spacetime dimensions. JHEP 07, 167 (2019). arXiv:1904.11001 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  130. H. Johansson, A. Ochirov, Double copy for massive quantum particles with spin. JHEP 09, 040 (2019). arXiv:1906.12292 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  131. B. Maybee, D. O’Connell, J. Vines, Observables and amplitudes for spinning particles and black holes. arXiv:1906.09260 [hep-th]

  132. J. Plefka, C. Shi, J. Steinhoff, T. Wang, Breakdown of the classical double copy for the effective action of dilaton-gravity at NNLO. Phys. Rev. D 100(8), 086006 (2019). arXiv:1906.05875 [hep-th]

    ADS  MathSciNet  Google Scholar 

  133. Z. Bern, C. Cheung, R. Roiban, C.-H. Shen, M.P. Solon, M. Zeng, Scattering amplitudes and the conservative hamiltonian for binary systems at third post-minkowskian order. Phys. Rev. Lett. 122(20), 201603 (2019). arXiv:1901.04424 [hep-th]

    ADS  Google Scholar 

  134. Z. Bern, C. Cheung, R. Roiban, C.-H. Shen, M.P. Solon, M. Zeng, Black hole binary dynamics from the double copy and effective theory. arXiv:1908.01493 [hep-th]

  135. N. Arkani-Hamed, Y.-T. Huang, D. O’Connell, Kerr black holes as elementary particles. arXiv:1906.10100 [hep-th]

  136. L. Borsten, M.J. Duff, L.J. Hughes, S. Nagy, A magic square from Yang–Mills squared. Phys. Rev. Lett. 112, 131601 (2014). arXiv:1301.4176 [hep-th]

    ADS  Google Scholar 

  137. A. Anastasiou, L. Borsten, M.J. Duff, L.J. Hughes, S. Nagy, Yang–Mills origin of gravitational symmetries. Phys. Rev. Lett. 113(23), 231606 (2014). arXiv:1408.4434 [hep-th]

    ADS  Google Scholar 

  138. A. Anastasiou, L. Borsten, M.J. Duff, L.J. Hughes, S. Nagy, A magic pyramid of supergravities. JHEP 1404, 178 (2014). arXiv:1312.6523 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  139. L. Borsten, M.J. Duff, Gravity as the square of Yang–Mills? Phys. Script. 90, 108012 (2015). arXiv:1602.08267 [hep-th]

    ADS  Google Scholar 

  140. A. Anastasiou, L. Borsten, L.J. Hughes, S. Nagy, Global symmetries of Yang–Mills squared in various dimensions. JHEP 148, 1601 (2016). arXiv:1502.05359 [hep-th]

    MATH  Google Scholar 

  141. A. Anastasiou, L. Borsten, M.J. Duff, S. Nagy, M. Zoccali, Gravity as gauge theory squared: a ghost story. Phys. Rev. Lett. 121(21), 211601 (2018). arXiv:1807.02486 [hep-th]

    ADS  Google Scholar 

  142. L. Borsten, \(\text{ D }=6\), \({\cal{N}}=(2,0)\) and \({\cal{N}}=(4,0)\) theories. Phys. Rev. D 97, 066014 (2018). arXiv:1708.02573 [hep-th]

    ADS  MathSciNet  Google Scholar 

  143. J.J.M. Carrasco, Gauge and Gravity Amplitude Relations. In Journeys Through the Precision Frontier: Amplitudes for Colliders. World Scientific, Singapore (2015). arXiv:1506.00974 [hep-th]

  144. Z. Bern, J.J. Carrasco, M. Chiodaroli, H. Johansson, R. Roiban, The duality between color and kinematics and its applications. arXiv:1909.01358 [hep-th]

  145. M.L. Mangano, S.J. Parke, Multiparton amplitudes in gauge theories. Phys. Rept. 200, 301–367 (1991). arXiv:hep-th/0509223 [hep-th]

    ADS  Google Scholar 

  146. J.M. Henn, J.C. Plefka, Scattering amplitudes in gauge theories. Lect. Notes Phys. 883, 1–195 (2014)

    MathSciNet  MATH  Google Scholar 

  147. C.D. White, Aspects of high energy scattering. arXiv:1909.05177 [hep-th]

  148. C. Cheung, TASI lectures on scattering amplitudes. In Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics: Anticipating the Next Discoveries in Particle Physics (TASI 2016): Boulder, CO, USA, June 6–July 1, 2016, pp. 571–623. (2018). arXiv:1708.03872 [hep-ph]

  149. Z. Bern, Perturbative quantum gravity and its relation to gauge theory. Living Rev. Rel. 5, 5 (2002). arXiv:gr-qc/0206071 [gr-qc]

    MathSciNet  MATH  Google Scholar 

  150. T. Adamo, Lectures on twistor theory. PoS Modave2017, 003 (2018). arXiv:1712.02196 [hep-th]

    Google Scholar 

  151. Y. Geyer, Ambitwistor Strings: Worldsheet Approaches to perturbative Quantum Field Theories. PhD thesis, Oxford University, Inst. Math. (2016). arXiv:1610.04525 [hep-th]

  152. L.D. Faddeev, V.N. Popov, Feynman diagrams for the Yang–Mills field. Phys. Lett. B 25, 29–30 (1967). [325(1967)]

  153. C. Becchi, A. Rouet, R. Stora, Renormalization of gauge theories. Ann. Phys. 98, 287–321 (1976)

    ADS  MathSciNet  Google Scholar 

  154. I.V. Tyutin, Gauge invariance in field theory and statistical physics in operator formalism. Lebedev Physics Institute preprint 39 (1975). arXiv:0812.0580 [hep-th]

  155. T. Kugo, I. Ojima, Local covariant operator formalism of nonabelian gauge theories and quark confinement problem. Prog. Theor. Phys. Suppl. 66, 1–130 (1979)

    ADS  MathSciNet  Google Scholar 

  156. M. Henneaux, C. Teitelboim, Quantization of gauge systems. (1992)

  157. J. Gomis, J. Paris, S. Samuel, Antibracket, antifields and gauge theory quantization. Phys. Rept. 259, 1–145 (1995). arXiv:hep-th/9412228 [hep-th]

    ADS  MathSciNet  Google Scholar 

  158. E.S. Fradkin, G.A. Vilkovisky, Quantization of relativistic systems with constraints. Phys. Lett. B 55, 224–226 (1975)

    ADS  MathSciNet  MATH  Google Scholar 

  159. I.A. Batalin, G.A. Vilkovisky, Relativistic S matrix of dynamical systems with Boson and Fermion constraints. Phys. Lett. B 69B, 309–312 (1977)

    ADS  Google Scholar 

  160. I.A. Batalin, G.A. Vilkovisky, Gauge algebra and quantization. Phys. Lett. B 102, 27–31 (1981)

    ADS  MathSciNet  Google Scholar 

  161. I.A. Batalin, G.A. Vilkovisky, Quantization of gauge theories with linearly dependent generators. Phys. Rev. D 28, 2567–2582 (1983). [Erratum: Phys. Rev.D30,508(1984)]

  162. I.A. Batalin, G.A. Vilkovisky, Closure of the gauge algebra, generalized lie equations and Feynman rules. Nucl. Phys. B 234, 106–124 (1984)

    ADS  MathSciNet  Google Scholar 

  163. I.A. Batalin, G.A. Vilkovisky, Existence theorem for gauge algebra. J. Math. Phys. 26, 172–184 (1985)

    ADS  MathSciNet  Google Scholar 

  164. M. Srednicki, Quantum Field Theory (Cambridge University Press, Cambridge, 2007)

    MATH  Google Scholar 

  165. D.-P. Zhu, Zeros in Scattering amplitudes and the structure of nonabelian gauge theories. Phys. Rev. D 22, 2266 (1980)

    Google Scholar 

  166. C.J. Goebel, F. Halzen, J.P. Leveille, Angular zeros of Brown, Mikaelian, Sahdev, and Samuel and the factorization of tree amplitudes in gauge theories. Phys. Rev. D 23, 2682–2685 (1981)

    ADS  Google Scholar 

  167. R. Kleiss, H. Kuijf, Multi-gluon cross-sections and five jet production at hadron colliders. Nucl. Phys. B 312, 616–644 (1989)

    ADS  Google Scholar 

  168. V. Del Duca, L.J. Dixon, F. Maltoni, New color decompositions for gauge amplitudes at tree and loop level. Nucl. Phys. B 571, 51–70 (2000). arXiv:hep-ph/9910563 [hep-ph]

    ADS  Google Scholar 

  169. N.E.J. Bjerrum-Bohr, P.H. Damgaard, P. Vanhove, Minimal basis for gauge theory amplitudes. Phys. Rev. Lett. 103, 161602 (2009). arXiv:0907.1425 [hep-th]

    ADS  MathSciNet  Google Scholar 

  170. S. Stieberger, Open and closed vs. pure open string disk amplitudes. arXiv:0907.2211 [hep-th]

  171. C.R. Mafra, O. Schlotterer, Berends–Giele recursions and the BCJ duality in superspace and components. JHEP 03, 097 (2016). arXiv:1510.08846 [hep-th]

    ADS  MATH  Google Scholar 

  172. S.H. Henry Tye, Y. Zhang, Dual identities inside the gluon and the graviton scattering amplitudes. JHEP 06, 071 (2010). arXiv:1003.1732 [hep-th]. [Erratum: JHEP04,114(2011)]

  173. C.R. Mafra, O. Schlotterer, The structure of n-point one-loop open superstring amplitudes. JHEP 08, 099 (2014). arXiv:1203.6215 [hep-th]

    ADS  Google Scholar 

  174. O. Schlotterer, S. Stieberger, Motivic multiple zeta values and superstring amplitudes. J. Phys. A46, 475401 (2013). arXiv:1205.1516 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  175. J. Broedel, O. Schlotterer, S. Stieberger, Polylogarithms, multiple zeta values and superstring amplitudes. Fortsch. Phys. 61, 812–870 (2013). arXiv:1304.7267 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  176. B. Feng, R. Huang, Y. Jia, Gauge amplitude identities by on-shell recursion relation in S-matrix program. Phys. Lett. B B695, 350–353 (2011). arXiv:1004.3417 [hep-th]

    ADS  MathSciNet  Google Scholar 

  177. R. Britto, F. Cachazo, B. Feng, E. Witten, Direct proof of tree-level recursion relation in Yang–Mills theory. Phys. Rev. Lett. 94, 181602 (2005). arXiv:hep-th/0501052 [hep-th]

    ADS  MathSciNet  Google Scholar 

  178. F. Cachazo, Fundamental BCJ relation in \(\text{ N }=4\) SYM from the connected formulation. arXiv:1206.5970 [hep-th]

  179. D. Vaman, Y.-P. Yao, Constraints and generalized gauge transformations on tree-level gluon and graviton amplitudes. JHEP 11, 028 (2010). arXiv:1007.3475 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  180. A. Ferber, Supertwistors and conformal supersymmetry. Nucl. Phys. B 132, 55–64 (1978)

    ADS  MathSciNet  Google Scholar 

  181. Z. Bern, S. Davies, T. Dennen, Y.-T. Huang, J. Nohle, Color-kinematics duality for pure Yang–Mills and gravity at one and two loops. Phys. Rev. D 92(4), 045041 (2015). arXiv:1303.6605 [hep-th]

    ADS  MathSciNet  Google Scholar 

  182. J.J.M. Carrasco, H. Johansson, Generic multiloop methods and application to \(\text{ N }=4\) super–Yang–Mills. J. Phys. A 44, 454004 (2011). arXiv:1103.3298 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  183. Z. Bern, C. Boucher-Veronneau, H. Johansson, \(\text{ N }>= 4\) Supergravity amplitudes from gauge theory at one loop. Phys. Rev. D 84, 105035 (2011). arXiv:1107.1935 [hep-th]

    ADS  Google Scholar 

  184. C. Boucher-Veronneau, L.J. Dixon, \(\text{ N }>- 4\) supergravity amplitudes from gauge theory at two loops. JHEP 12, 046 (2011). arXiv:1110.1132 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  185. C.R. Mafra, O. Schlotterer, Two-loop five-point amplitudes of super Yang–Mills and supergravity in pure spinor superspace. JHEP 10, 124 (2015). arXiv:1505.02746 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  186. S. Weinzierl, Fermions and the scattering equations. JHEP 03, 141 (2015). arXiv:1412.5993 [hep-th]

    MathSciNet  MATH  Google Scholar 

  187. T. Kugo, P.K. Townsend, Supersymmetry and the division algebras. Nucl. Phys. B 221, 357 (1983)

    ADS  MathSciNet  Google Scholar 

  188. J.M. Evans, Supersymmetric Yang–Mills theories and division algebras. Nucl. Phys. B 298, 92 (1988)

    ADS  MathSciNet  Google Scholar 

  189. J.C. Baez, J. Huerta, Division algebras and supersymmetry I. In R. Doran, G. Friedman, J. Rosenberg, (eds.), Superstrings, Geometry, Topology, and C*-Algebras, Proc. Symp. Pure Math, vol. 81, 65–80. (2009). arXiv:0909.0551 [hep-th]

  190. A. Anastasiou, L. Borsten, M.J. Duff, L.J. Hughes, S. Nagy, Super Yang–Mills, division algebras and triality. JHEP 1408, 080 (2014). arXiv:1309.0546 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  191. A. Sudbery, Division algebras, (pseudo)orthogonal groups, and spinors. J. Phys. A 17(5), 939–955 (1984)

    ADS  MathSciNet  MATH  Google Scholar 

  192. K. Chung, A. Sudbery, Octonions and the Lorentz and conformal groups of ten-dimensional space-time. Phys. Lett. B 198, 161 (1987)

    ADS  MathSciNet  Google Scholar 

  193. C.A. Manogue, A. Sudbery, General solutions of covariant superstring equations of motion. Phys. Rev. D 40, 4073 (1989)

    ADS  MathSciNet  Google Scholar 

  194. P. Ramond, Introduction to exceptional lie groups and algebras. CALT-68-577 (1977)

  195. J.C. Baez, The octonions. Bull. Am. Math. Soc. 39, 145–205 (2002). arXiv:math/0105155 [math-ra]

    MathSciNet  MATH  Google Scholar 

  196. C.H. Barton, A. Sudbery, Magic squares and matrix models of Lie algebras. Adv. Math. 180(2), 596–647 (2003). arXiv:math/0203010

    MathSciNet  MATH  Google Scholar 

  197. A. Anastasiou, L. Borsten, M.J. Duff, A. Marrani, S. Nagy, M. Zoccali, The mile high magic pyramid. In P. Vojtechovsky, (ed.), Nonassociative mathematics and its applications, vol. 721 of Contemporary Mathematics, pp. 1–27. Amer. Math. Soc., Providence, RI (2019). arXiv:1711.08476 [hep-th]

  198. A. Hodges, New expressions for gravitational scattering amplitudes. J. High Energy Phys. 1307 (2013). arXiv:1108.2227 [hep-th]

  199. F. Cachazo, S. He, E.Y. Yuan, Scattering of massless particles: scalars, gluons and gravitons. JHEP 1407, 033 (2014). arXiv:1309.0885 [hep-th]

    ADS  MATH  Google Scholar 

  200. R. Monteiro, D. O’Connell, The kinematic algebras from the scattering equations. JHEP 1403, 110 (2014). arXiv:1311.1151 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  201. F. Cachazo, S. He, E.Y. Yuan, Scattering equations and matrices: from Einstein to Yang–Mills, DBI and NLSM. JHEP 07, 149 (2015). arXiv:1412.3479 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  202. S.G. Naculich, Scattering equations and BCJ relations for gauge and gravitational amplitudes with massive scalar particles. JHEP 09, 029 (2014). arXiv:1407.7836 [hep-th]

    ADS  Google Scholar 

  203. S.G. Naculich, CHY representations for gauge theory and gravity amplitudes with up to three massive particles. JHEP 05, 050 (2015). arXiv:1501.03500 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  204. C. Cheung, C.-H. Shen, Symmetry for flavor-kinematics duality from an action. Phys. Rev. Lett. 118(12), 121601 (2017). arXiv:1612.00868 [hep-th]

    ADS  Google Scholar 

  205. R.W. Brown, S.G. Naculich, KLT-type relations for QCD and bicolor amplitudes from color-factor symmetry. JHEP 03, 057 (2018). arXiv:1802.01620 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  206. H. Johansson, A. Ochirov, Color-kinematics duality for QCD amplitudes. JHEP 01, 170 (2016). arXiv:1507.00332 [hep-ph]

    ADS  MathSciNet  MATH  Google Scholar 

  207. M. Chiodaroli, Simplifying amplitudes in Maxwell–Einstein and Yang–Mills–Einstein supergravities. In J. Brüning, M. Staudacher, (eds) Space-time–matter: analytic and geometric structures (2018)

  208. N. Marcus, J.H. Schwarz, Three-dimensional supergravity theories. Nucl. Phys. B 228, 145 (1983)

    ADS  MathSciNet  Google Scholar 

  209. B. de Wit, A. Tollsten, H. Nicolai, Locally supersymmetric \(\text{ d }=3\) nonlinear sigma models. Nucl. Phys. B 392, 3–38. arXiv:hep-th/9208074

  210. J. Bagger, N. Lambert, Modeling multiple M2’s. Phys. Rev. D 75, 045020 (2007). arXiv:hep-th/0611108 [hep-th]

    ADS  MathSciNet  Google Scholar 

  211. A. Gustavsson, Algebraic structures on parallel M2-branes. Nucl. Phys. B 811, 66–76 (2009). arXiv:0709.1260 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  212. J. Bagger, N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes. Phys. Rev. D 77, 065008 (2008). arXiv:0711.0955 [hep-th]

    ADS  MathSciNet  Google Scholar 

  213. Y.-T. Huang, H. Johansson, S. Lee, On three-algebra and bi-fundamental matter amplitudes and integrability of supergravity. JHEP 11, 050 (2013). arXiv:1307.2222 [hep-th]

    ADS  Google Scholar 

  214. O. Aharony, O. Bergman, D.L. Jafferis, J. Maldacena, \(\text{ N }=6\) superconformal Chern–Simons-matter theories, M2-branes and their gravity duals. JHEP 10, 091 (2008). arXiv:0806.1218 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  215. S. Palmer, C. Sämann, The ABJM model is a higher gauge theory. Int. J. Geom. Methods. Mod. Phys. 11(08), 1450075 (2014). arXiv:1311.1997 [hep-th]

    MathSciNet  MATH  Google Scholar 

  216. A. Ochirov, P. Tourkine, BCJ duality and double copy in the closed string sector. JHEP 05, 136 (2014). arXiv:1312.1326 [hep-th]

    ADS  Google Scholar 

  217. N.E.J. Bjerrum-Bohr, P.H. Damgaard, P. Tourkine, P. Vanhove, Scattering equations and string theory amplitudes. Phys. Rev. D 90(10), 106002 (2014). arXiv:1403.4553 [hep-th]

    ADS  Google Scholar 

  218. S. He, R. Monteiro, O. Schlotterer, String-inspired BCJ numerators for one-loop MHV amplitudes. JHEP 01, 171 (2016). arXiv:1507.06288 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  219. L. Dolan, P. Goddard, Proof of the formula of Cachazo, He and Yuan for Yang–Mills tree amplitudes in arbitrary dimension. JHEP 1405, 010 (2014). arXiv:1311.5200 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  220. N.E.J. Bjerrum-Bohr, J.L. Bourjaily, P.H. Damgaard, B. Feng, Manifesting Color–kinematics duality in the scattering equation formalism. JHEP 09, 094 (2016). arXiv:1608.00006 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  221. L. Mason, D. Skinner, Ambitwistor strings and the scattering equations. JHEP 1407, 048 (2014). arXiv:1311.2564 [hep-th]

    ADS  Google Scholar 

  222. T. Adamo, E. Casali, D. Skinner, Ambitwistor strings and the scattering equations at one loop. JHEP 04, 104 (2014). arXiv:1312.3828 [hep-th]

    ADS  Google Scholar 

  223. Y. Geyer, L. Mason, R. Monteiro, P. Tourkine, Loop integrands for scattering amplitudes from the Riemann sphere. Phys. Rev. Lett. 115(12), 121603 (2015). arXiv:1507.00321 [hep-th]

    ADS  Google Scholar 

  224. Y. Geyer, L. Mason, R. Monteiro, P. Tourkine, Two-loop scattering amplitudes from the Riemann sphere. arXiv:1607.08887 [hep-th]

  225. T. Adamo, E. Casali, L. Mason, S. Nekovar, Scattering on plane waves and the double copy. Class. Quant. Gravit. 35(1), 015004 (2018). arXiv:1706.08925 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  226. M.J. Duff, P. van Nieuwenhuizen, Quantum inequivalence of different field representations. Phys. Lett. B 94, 179 (1980)

    ADS  Google Scholar 

  227. R. Gilmore, Lie Groups, Lie Algebras, and Some of Their Applications (Courier Corporation, Massachusetts, 2012)

    MATH  Google Scholar 

  228. A.L. Besse, Einstein Manifolds. A Series of Modern Surveys in Mathematics. Springer, Berlin (1987). http://link.springer.com/book/10.1007/BF02345020

  229. M. Ben-Shahar, M. Chiodaroli, One-loop amplitudes for \({\cal{N}} =2\) homogeneous supergravities. JHEP 03, 153 (2019). arXiv:1812.00402 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  230. B.S. DeWitt, Quantum theory of gravity. 1. The canonical theory. Phys. Rev. 160, 1113–1148 (1967). [3, 93 (1987)]

  231. B. S. DeWitt, Quantum theory of gravity. 2. The manifestly covariant theory. Phys. Rev. 162, 1195–1239 (1967). [298 (1967)]

  232. B. S. DeWitt, Quantum theory of gravity. 3. Applications of the covariant theory. Phys. Rev. 162, 1239–1256 (1967). [307 (1967)]

  233. N.E.J. Bjerrum-Bohr, P.H. Damgaard, B. Feng, T. Sondergaard, Gravity and Yang–Mills amplitude relations. Phys. Rev. D 82, 107702 (2010). arXiv:1005.4367 [hep-th]

    ADS  MATH  Google Scholar 

  234. L. Castellani, A. Ceresole, S. Ferrara, R. D’Auria, P. Fre et al., The complete \(\text{ n }=3\) matter coupled supergravity. Nucl. Phys. B 268, 317 (1986)

    ADS  MathSciNet  Google Scholar 

  235. A. Strominger, Special geometry. Commun. Math. Phys. 133, 163–180 (1990)

    ADS  MathSciNet  MATH  Google Scholar 

  236. B. de Wit, A. Van Proeyen, Broken sigma model isometries in very special geometry. Phys. Lett. B 293, 94–99 (1992). arXiv:hep-th/9207091 [hep-th]

    ADS  Google Scholar 

  237. M. Günaydin, G. Sierra, P.K. Townsend, The geometry of \(N=2\) Maxwell–Einstein supergravity and Jordan algebras. Nucl. Phys. B 242, 244 (1984)

    ADS  MathSciNet  Google Scholar 

  238. B. de Wit, A. Van Proeyen, Potentials and symmetries of general gauged \(\text{ N }=2\) supergravity: Yang–Mills models. Nucl. Phys. B B245, 89–117 (1984)

    ADS  MathSciNet  Google Scholar 

  239. J. Bagger, E. Witten, Matter couplings in \(\text{ N }=2\) supergravity. Nucl. Phys. B 222, 1–10 (1983)

    ADS  MathSciNet  Google Scholar 

  240. B. de Wit, P.G. Lauwers, R. Philippe, S.Q. Su, A. Van Proeyen, Gauge and matter fields coupled to \(\text{ N }=2\) supergravity. Phys. Lett. B 134, 37–43 (1984)

    ADS  MathSciNet  Google Scholar 

  241. S. Cecotti, S. Ferrara, L. Girardello, Geometry of type II superstrings and the moduli of superconformal field theories. Int. J. Mod. Phys. A 4, 2475 (1989)

    ADS  MathSciNet  MATH  Google Scholar 

  242. S. Cecotti, Homogeneous Kahler manifolds and \(T\) algebras in \(N=2\) supergravity and superstrings. Commun. Math. Phys. 124, 23–55 (1989)

    ADS  MATH  Google Scholar 

  243. B. de Wit, F. Vanderseypen, A. Van Proeyen, Symmetry structure of special geometries. Nucl. Phys. B 400, 463–524 (1993). arXiv:hep-th/9210068 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  244. M. Günaydin, G. Sierra, P.K. Townsend, Gauging the \(d=5\) Maxwell–Einstein supergravity theories: more on Jordan algebras. Nucl. Phys. B B253, 573 (1985)

    ADS  MathSciNet  Google Scholar 

  245. M. Günaydin, G. Sierra, P.K. Townsend, Exceptional supergravity theories and the magic square. Phys. Lett. B 133, 72 (1983)

    ADS  MathSciNet  Google Scholar 

  246. B. de Wit, A. Van Proeyen, Isometries of special manifolds (1995). arXiv:hep-th/9505097 [hep-th]

  247. K. Saraikin, C. Vafa, Non-supersymmetric black holes and topological strings. Class. Quant. Gravit. 25, 095007 (2008). arXiv:hep-th/0703214 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  248. M.J. Duff, J.T. Liu, J. Rahmfeld, Four-dimensional string–string–string triality. Nucl. Phys. B 459, 125–159 (1996). arXiv:hep-th/9508094

    ADS  MathSciNet  MATH  Google Scholar 

  249. D. Nandan, J. Plefka, O. Schlotterer, C. Wen, Einstein–Yang–Mills from pure Yang–Mills amplitudes. arXiv:1607.05701 [hep-th]

  250. F. Teng, B. Feng, Expanding Einstein–Yang–Mills by Yang–Mills in CHY frame. JHEP 05, 075 (2017). arXiv:1703.01269 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  251. Y.-J. Du, B. Feng, F. Teng, Expansion of all multitrace tree level EYM amplitudes. JHEP 12, 038 (2017). arXiv:1708.04514 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  252. S. He, O. Schlotterer, New relations for gauge-theory and gravity amplitudes at loop level. Phys. Rev. Lett. 118(16), 161601 (2017). arXiv:1612.00417 [hep-th]

    ADS  Google Scholar 

  253. D. Nandan, J. Plefka, G. Travaglini, All rational one-loop Einstein–Yang–Mills amplitudes at four points. JHEP 09, 011 (2018). arXiv:1803.08497 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  254. Y. Dolivet, B. Julia, C. Kounnas, Magic \(\text{ N }=2\) supergravities from hyper-free superstrings. JHEP 02, 097 (2008). arXiv:0712.2867 [hep-th]

    ADS  MathSciNet  Google Scholar 

  255. M. Bianchi, S. Ferrara, Enriques and octonionic magic supergravity models. JHEP 02, 054 (2008). arXiv:0712.2976 [hep-th]

    ADS  MathSciNet  Google Scholar 

  256. D. Roest, H. Samtleben, Twin supergravities. Class. Quant. Gravit. 26, 155001 (2009). arXiv:0904.1344 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  257. M.J. Duff, S. Ferrara, Generalized mirror symmetry and trace anomalies. Class. Quant. Gravit. 28, 065005 (2011). arXiv:1009.4439 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  258. L. Borsten, M.J. Duff, A. Marrani, Twin conformal field theories. JHEP 03, 112 (2019). arXiv:1812.11130 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  259. H. Johansson, G. Mogull, F. Teng, Unraveling conformal gravity amplitudes. JHEP 09, 080 (2018). arXiv:1806.05124 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  260. N. Berkovits, E. Witten, Conformal supergravity in twistor-string theory. JHEP 08, 009 (2004). arXiv:hep-th/0406051 [hep-th]

    ADS  MathSciNet  Google Scholar 

  261. E.S. Fradkin, A.A. Tseytlin, Conformal supergravity. Phys. Rept. 119, 233–362 (1985)

    ADS  MathSciNet  Google Scholar 

  262. C.R. Mafra, O. Schlotterer, Non-abelian \(Z\)-theory: Berends–Giele recursion for the \(\alpha ^{\prime }\)-expansion of disk integrals. JHEP 01, 031 (2017). arXiv:1609.07078 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  263. O. Schlotterer, O. Schnetz, Closed strings as single-valued open strings: a genus-zero derivation. J. Phys. A 52(4), 045401 (2019). arXiv:1808.00713 [hep-th]

    ADS  MATH  Google Scholar 

  264. F. Cachazo, P. Cha, S. Mizera, Extensions of theories from soft limits. JHEP 06, 170 (2016). arXiv:1604.03893 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  265. J.A. Farrow, A.E. Lipstein, P. McFadden, Double copy structure of CFT correlators. JHEP 02, 130 (2019). arXiv:1812.11129 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  266. A.R. Fazio, Cosmological correlators. In: In Formalism and double copy. arXiv:1909.07343 [hep-th]

  267. A. Lipstein, P. McFadden, Double copy structure and the flat space limit of conformal correlators in even dimensions. arXiv:1912.10046 [hep-th]

  268. S. Ferrara, D. Lüst, Spin-four \({\cal{N}}=7\) W-supergravity: S-fold and double copy construction. JHEP 07, 114 (2018). arXiv:1805.10022 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  269. Y. Geyer, L. Mason, Polarized scattering equations for 6D superamplitudes. Phys. Rev. Lett. 122(10), 101601 (2019). arXiv:1812.05548 [hep-th]

    ADS  Google Scholar 

  270. S. Ferrara, M. Porrati, A. Zaffaroni, \(\text{ N }=6\) supergravity on AdS(5) and the SU(2,2/3) superconformal correspondence. Lett. Math. Phys. 47, 255–263 (1999). arXiv:hep-th/9810063 [hep-th]

    MathSciNet  MATH  Google Scholar 

  271. O. Aharony, M. Evtikhiev, On four dimensional \(\text{ N }=3\) superconformal theories. JHEP 04, 040 (2016). arXiv:1512.03524 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  272. I. García-Etxebarria, D. Regalado, \({\cal{N}}=3\) four dimensional field theories. JHEP 03, 083 (2016). arXiv:1512.06434 [hep-th]

    ADS  MATH  Google Scholar 

  273. O. Aharony, Y. Tachikawa, S-folds and 4d \(\text{ N }=3\) superconformal field theories. JHEP 06, 044 (2016). arXiv:1602.08638 [hep-th]

    ADS  MATH  Google Scholar 

  274. Y. Geyer, A.E. Lipstein, L.J. Mason, Ambitwistor strings in four dimensions. Phys. Rev. Lett. 113(8), 081602 (2014). arXiv:1404.6219 [hep-th]

    ADS  Google Scholar 

  275. Y. Geyer, L. Mason, R. Monteiro, P. Tourkine, One-loop amplitudes on the Riemann sphere. JHEP 03, 114 (2016). arXiv:1511.06315 [hep-th]

    ADS  MATH  Google Scholar 

  276. C. Hull, Strongly coupled gravity and duality. Nucl. Phys. B 583, 237–259 (2000). arXiv:hep-th/0004195 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  277. R. Monteiro, D. O’Connell, The kinematic algebra from the self-dual sector. JHEP 1107, 007 (2011). arXiv:1105.2565 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  278. N. Bjerrum-Bohr, P.H. Damgaard, R. Monteiro, D. O’Connell, Algebras for amplitudes. JHEP 1206, 061 (2012). arXiv:1203.0944 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  279. M. Tolotti, S. Weinzierl, Construction of an effective Yang–Mills Lagrangian with manifest BCJ duality. JHEP 07, 111 (2013). arXiv:1306.2975 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  280. C.-H. Fu, K. Krasnov, Colour-Kinematics duality and the Drinfeld double of the Lie algebra of diffeomorphisms. JHEP 01, 075 (2017). arXiv:1603.02033 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  281. C. Cheung, G.N. Remmen, Twofold symmetries of the pure gravity action. JHEP 01, 104 (2017). arXiv:1612.03927 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  282. G. Chen, H. Johansson, F. Teng, T. Wang, On the kinematic algebra for BCJ numerators beyond the MHV sector. arXiv:1906.10683 [hep-th]

  283. Z. Bern, A.K. Grant, Perturbative gravity from QCD amplitudes. Phys. Lett. B 457, 23–32 (1999). arXiv:hep-th/9904026 [hep-th]

    ADS  Google Scholar 

  284. O. Hohm, On factorizations in perturbative quantum gravity. JHEP 04, 103 (2011). arXiv:1103.0032 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  285. C. Cheung, G.N. Remmen, Hidden simplicity of the gravity action. JHEP 09, 002 (2017). arXiv:1705.00626 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  286. W. Siegel, Two vierbein formalism for string inspired axionic gravity. Phys. Rev. D 47, 5453–5459 (1993). arXiv:hep-th/9302036 [hep-th]

    ADS  MathSciNet  Google Scholar 

  287. W. Siegel, Superspace duality in low-energy superstrings. Phys. Rev. D 48, 2826–2837 (1993). arXiv:hep-th/9305073 [hep-th]

    ADS  MathSciNet  Google Scholar 

  288. C. Hull, B. Zwiebach, Double field theory. JHEP 0909, 099 (2009). arXiv:0904.4664 [hep-th]

    ADS  MathSciNet  Google Scholar 

  289. C. Hull, B. Zwiebach, The Gauge algebra of double field theory and Courant brackets. JHEP 0909, 090 (2009). arXiv:0908.1792 [hep-th]

    ADS  MathSciNet  Google Scholar 

  290. O. Hohm, C. Hull, B. Zwiebach, Generalized metric formulation of double field theory. JHEP 1008, 008 (2010). arXiv:1006.4823 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  291. M.J. Duff, Duality rotations in string theory. Nucl. Phys. B 335, 610 (1990)

    ADS  MathSciNet  MATH  Google Scholar 

  292. M.J. Duff, J.X. Lu, Duality rotations in membrane theory. Nucl. Phys. B 347, 394–419 (1990)

    ADS  MathSciNet  MATH  Google Scholar 

  293. A.A. Tseytlin, Duality symmetric formulation of string world sheet dynamics. Phys. Lett. B 242, 163–174 (1990)

    ADS  MathSciNet  Google Scholar 

  294. A.A. Tseytlin, Duality symmetric closed string theory and interacting chiral scalars. Nucl. Phys. B 350, 395–440 (1991)

    ADS  MathSciNet  Google Scholar 

  295. A.I. Janis, E.T. Newman, J. Winicour, Reality of the Schwarzschild singularity. Phys. Rev. Lett. 20, 878–880 (1968)

    ADS  Google Scholar 

  296. K. Kim, K. Lee, R. Monteiro, I. Nicholson, D. Peinador Veiga, The classical double copy of a point charge. arXiv:1912.02177 [hep-th]

  297. M.J. Duff, J. Lu, Duality for strings and membranes. Conf. Proc. C 9003122, 148–162 (1990)

    Google Scholar 

  298. K. Lee, Kerr–Schild double field theory and classical double copy. JHEP 10, 027 (2018). arXiv:1807.08443 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  299. W. Siegel, Superstrings give old minimal supergravity. Phys. Lett. B 211, 55 (1988)

    ADS  Google Scholar 

  300. W. Siegel, Curved extended superspace from Yang–Mills theory a la strings. Phys. Rev. D 53, 3324–3336 (1996). arXiv:hep-th/9510150 [hep-th]

    ADS  MathSciNet  Google Scholar 

  301. C.M. Hull, The BRST and anti-BRST invariant quantization of general gauge theories. Mod. Phys. Lett. A5, 1871–1882 (1990)

    ADS  MathSciNet  MATH  Google Scholar 

  302. L. Borsten, S. Nagy, The classical double-copy: ghosts and gauges. In preparation (2019)

  303. M. Zoccali, Supergravity as Yang–Mills squared. PhD thesis, Imperial Coll., London (2018)

  304. L. Borsten, I. Jubb, V. Makwana, S. Nagy, Gauge \(\times \) gauge on spheres. arXiv:1911.12324 [hep-th]

  305. S. Cecotti, S. Ferrara, M. Porrati, S. Sabharwal, New minimal higher derivative supergravity coupled to matter. Nucl. Phys. B 306, 160 (1988)

    ADS  MathSciNet  Google Scholar 

  306. S. Ferrara, S. Sabharwal, Structure of new minimal supergravity. Ann. Phys. 189, 318–351 (1989)

    ADS  MathSciNet  Google Scholar 

  307. K. Stelle, P.C. West, Minimal auxiliary fields for supergravity. Phys. Lett. B 74, 330 (1978)

    ADS  Google Scholar 

  308. S. Ferrara, P. van Nieuwenhuizen, The auxiliary fields of supergravity. Phys. Lett. B 74, 333 (1978)

    ADS  Google Scholar 

  309. E. Cremmer, B. Julia, The \(SO(8)\) supergravity. Nucl. Phys. B 159, 141 (1979)

    ADS  MathSciNet  Google Scholar 

  310. C.M. Hull, P.K. Townsend, Unity of superstring dualities. Nucl. Phys. B 438, 109–137 (1995). arXiv:hep-th/9410167

    ADS  MathSciNet  MATH  Google Scholar 

  311. M. Bianchi, H. Elvang, D.Z. Freedman, Generating tree amplitudes in \(\text{ N }=4\) SYM and \(\text{ N }=8\) SG. JHEP 0809, 063 (2008). arXiv:0805.0757 [hep-th]

    ADS  MATH  Google Scholar 

  312. N. Arkani-Hamed, F. Cachazo, J. Kaplan, What is the simplest quantum field theory? JHEP 09, 016 (2010). arXiv:0808.1446 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  313. B. Julia, Group disintegrations. In: S. Hawking, M. Rocek, (eds.), Superspace and Supergravity, vol. C8006162 of Nuffield Gravity Workshop, Cambridge University Press, Cambridge, pp. 331–350 (1980)

  314. H. Nicolai, The integrability of \(N=16\) supergravity. Phys. Lett. B 194, 402 (1987)

    ADS  MathSciNet  Google Scholar 

  315. P.C. West, E(11) and M theory. Class. Quant. Gravit. 18, 4443–4460 (2001). arXiv:hep-th/0104081 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  316. T. Damour, M. Henneaux, H. Nicolai, E(10) and a ‘small tension expansion’ of M theory. Phys. Rev. Lett. 89, 221601 (2002). arXiv:hep-th/0207267 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  317. H. Freudenthal, Beziehungen der \(E_7\) und \(E_8\) zur oktavenebene I-II. Nederl. Akad. Wetensch. Proc. Ser. 57, 218–230 (1954)

    MATH  Google Scholar 

  318. J. Tits, Interprétation géométriques de groupes de Lie simples compacts de la classe \(E\). Mém. Acad. R. Belg. Sci 29, 3 (1955)

    Google Scholar 

  319. B.A. Rosenfeld, Geometrical interpretation of the compact simple Lie groups of the class \(E\) (Russian). Dokl. Akad. Nauk SSSR 106, 600–603 (1956)

    MathSciNet  Google Scholar 

  320. S. L. Adler, Consistency conditions on the strong interactions implied by a partially conserved axial vector current. Phys. Rev. 137, B1022–B1033 (1965) [140 (1964)]

  321. N. Craig, H. Elvang, M. Kiermaier, T. Slatyer, Massive amplitudes on the Coulomb branch of \(\text{ N }=4\) SYM. JHEP 12, 097 (2011). arXiv:1104.2050 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  322. H. Freudenthal, Beziehungen der \(E_7\) und \(E_8\) zur oktavenebene IX. Nederl. Akad. Wetensch. Proc. Ser. A62, 466–474 (1959)

    Google Scholar 

  323. J. Tits, Algébres alternatives, algébres de jordan et algébres de lie exceptionnelles. Indag. Math. 28, 223–237 (1966)

    MathSciNet  MATH  Google Scholar 

  324. S.L. Cacciatori, B.L. Cerchiai, A. Marrani, Squaring the magic. Adv. Theor. Math. Phys. 19, 923–954 (2015). arXiv:1208.6153 [math-ph]

    MathSciNet  MATH  Google Scholar 

  325. M. Gunaydin, Exceptional realizations of lorentz group: supersymmetries and leptons. Nuovo Cim. A29, 467 (1975)

    ADS  Google Scholar 

  326. M. Gunaydin, Octonionic hilbert spaces, the poincare group and SU(3). J. Math. Phys. 17, 1875 (1976)

    ADS  MathSciNet  Google Scholar 

  327. F. Gursey, Octonionic structures in particle physics. Lect. Notes Phys. 94, 508–521 (1979)

    ADS  Google Scholar 

  328. M. Gunaydin, Quadratic Jordan formulation of quantum mechanics and construction of lie (super)algebras from Jordan (super)algebras. In: International colloquium on group theoretical methods in physics, vol. 10, p. 18. Israel Grp.Th.Meth (1979)

  329. G. Sierra, An application to the theories of Jordan algebras and freudenthal triple systems to particles and strings. Class. Quant. Gravit. 4, 227 (1987)

    ADS  MathSciNet  MATH  Google Scholar 

  330. F. Gursey, Superpoincare groups and division algebras. Mod. Phys. Lett. A 2, 967 (1987)

    ADS  MathSciNet  Google Scholar 

  331. M.J. Duff, Supermembranes: the first fifteen weeks. Class. Quant. Gravit. 5, 189 (1988)

    ADS  MathSciNet  Google Scholar 

  332. M. Blencowe, M.J. Duff, Supermembranes and the signature of space-time. Nucl. Phys. B 310, 387 (1988)

    ADS  MATH  Google Scholar 

  333. M. Gunaydin, Generalized conformal and superconformal group actions and Jordan algebras. Mod. Phys. Lett. A 8, 1407–1416 (1993). arXiv:hep-th/9301050 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  334. N. Berkovits, A ten-dimensional super Yang–Mills action with off-shell supersymmetry. Phys. Lett. B 318, 104–106 (1993). arXiv:hep-th/9308128 [hep-th]

    ADS  Google Scholar 

  335. C.A. Manogue, J. Schray, Finite Lorentz transformations, automorphisms, and division algebras. J. Math. Phys. 34, 3746–3767 (1993). arXiv:hep-th/9302044

    ADS  MathSciNet  MATH  Google Scholar 

  336. J.M. Evans, Auxiliary fields for super Yang–Mills from division algebras. Lect. Notes Phys. 447, 218–223 (1995). arXiv:hep-th/9410239 [hep-th]

    ADS  MathSciNet  Google Scholar 

  337. J. Schray, C.A. Manogue, Octonionic representations of Clifford algebras and triality. Found. Phys. 26(1), 17–70 (1996). arXiv:hep-th/9407179

    ADS  MathSciNet  Google Scholar 

  338. F. Gürsey, C.-H. Tze, On the role of division, Jordan and related algebras in particle physics. World Scientific, London (1996). http://www.worldscientific.com/doi/abs/10.1142/9789812819857

  339. C.A. Manogue, T. Dray, Dimensional reduction. Mod. Phys. Lett. A 14, 99–104 (1999). arXiv:hep-th/9807044 [hep-th]

    ADS  MathSciNet  Google Scholar 

  340. E. Cremmer, B. Julia, H. Lu, C.N. Pope, Higher dimensional origin of \(\text{ D }=3\) coset symmetries. arXiv:hep-th/9909099 [hep-th]

  341. M. Günaydin, K. Koepsell, H. Nicolai, Conformal and quasiconformal realizations of exceptional Lie groups. Commun. Math. Phys. 221, 57–76 (2001). arXiv:hep-th/0008063

    ADS  MathSciNet  MATH  Google Scholar 

  342. F. Toppan, On the octonionic M-superalgebra. In: Sao Paulo 2002, Integrable theories, solitons and duality. (2002). arXiv:hep-th/0301163

  343. M. Günaydin, O. Pavlyk, Generalized spacetimes defined by cubic forms and the minimal unitary realizations of their quasiconformal groups. JHEP 08, 101 (2005). arXiv:hep-th/0506010

    ADS  MathSciNet  Google Scholar 

  344. Z. Kuznetsova, F. Toppan, Superalgebras of (split-)division algebras and the split octonionic M-theory in (6,5)-signature. arXiv:hep-th/0610122

  345. S. Bellucci, S. Ferrara, M. Günaydin, A. Marrani, Charge orbits of symmetric special geometries and attractors. Int. J. Mod. Phys. A21, 5043–5098 (2006). arXiv:hep-th/0606209

    ADS  MathSciNet  Google Scholar 

  346. L. Borsten, D. Dahanayake, M.J. Duff, H. Ebrahim, W. Rubens, Black holes, qubits and octonions. Phys. Rep. 471(3–4), 113–219 (2009). arXiv:0809.4685 [hep-th]

    ADS  MathSciNet  Google Scholar 

  347. L. Borsten, D. Dahanayake, M.J. Duff, W. Rubens, Black holes admitting a Freudenthal dual. Phys. Rev. D 80(2), 026003 (2009). arXiv:0903.5517 [hep-th]

    ADS  MathSciNet  Google Scholar 

  348. J.C. Baez, J. Huerta, Division algebras and supersymmetry II. Adv. Theor. Math. Phys. 15(5), 1373–1410 (2011). arXiv:1003.3436 [hep-th]

    MathSciNet  MATH  Google Scholar 

  349. L. Borsten, D. Dahanayake, M.J. Duff, S. Ferrara, A. Marrani et al., Observations on integral and continuous u-duality orbits in \(\text{ N }=8\) supergravity. Class. Quant. Gravit. 27, 185003 (2010). arXiv:1002.4223 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  350. M. Gunaydin, H. Samtleben, E. Sezgin, On the magical supergravities in six dimensions. Nucl. Phys. B 848, 62–89 (2011). arXiv:1012.1818 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  351. M. Rios, Extremal black holes as qudits. arXiv:1102.1193 [hep-th]

  352. J. Huerta, Division algebras, supersymmetry and higher gauge theory. arXiv:1106.3385 [math-ph]

  353. J. Huerta, Division algebras and supersymmetry III. Adv. Theor. Math. Phys. 16, 1485–1589 (2012). arXiv:1109.3574 [hep-th]

    MathSciNet  MATH  Google Scholar 

  354. S. Ferrara, A. Marrani, Black holes and groups of type E7. arXiv:1112.2664 [hep-th]

  355. S.L. Cacciatori, B.L. Cerchiai, A. Marrani, Magic coset decompositions. Adv. Theor. Math. Phys. 17, 1077–1128 (2013). arXiv:1201.6314 [hep-th]

    MathSciNet  MATH  Google Scholar 

  356. A. Anastasiou, L. Borsten, M.J. Duff, L.J. Hughes, S. Nagy, An octonionic formulation of the M-theory algebra. JHEP 1411, 022 (2014). arXiv:1402.4649 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  357. J. Huerta, Division algebras and supersymmetry IV. arXiv:1409.4361 [hep-th]

  358. A. Marrani, P. Truini, Exceptional lie algebras, SU(3) and Jordan pairs part 2: zorn-type representations. J. Phys. A 47, 265202 (2014). arXiv:1403.5120 [math-ph]

    ADS  MathSciNet  MATH  Google Scholar 

  359. A. Hurwitz, Uber die komposition der quadratishen formen von beliebig vielen variabeln. Nachr. Ges. Wiss. Gottingen 309–316 (1898)

  360. R. Moufang, Alternativkörper und der satz vom vollständigen vierseit. Abh. Math. Sem. Hamb. 9, 207–222 (1933)

    MathSciNet  MATH  Google Scholar 

  361. P. Jordan, Über eine nicht-desarguessche ebene projektive geometrie. Abh. Math. Sem. Hamb. 16, 74–76 (1949)

    MATH  Google Scholar 

  362. C. Chevalley, R.D. Schafer, The exceptional simple lie algebras \(f_4\) and \(e_6\). Proc. Natl. Acad. Sci. USA 137–141 (1950)

  363. D.B. Fairlie, C.A. Manogue, A parametrization of the covariant superstring. Phys. Rev. D 36, 475 (1987)

    ADS  MathSciNet  Google Scholar 

  364. J. Schray, The general classical solution of the superparticle. Class. Quant. Gravit. 13, 27–38 (1996). arXiv:hep-th/9407045 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  365. T. Dray, J. Janesky, C.A. Manogue, Octonionic hermitian matrices with non-real eigenvalues. Adv. Appl. Clifford Algebras 10(2), 193–216 (2000)

    MathSciNet  MATH  Google Scholar 

  366. C. Hull, Symmetries and compactifications of (4,0) conformal gravity. JHEP 0012, 007 (2000). arXiv:hep-th/0011215 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  367. C. Hull, Conformal nongemetric gravity in six-dimensions and M theory above the Planck energy. Class. Quant. Gravit. 18, 3233–3240 (2001). arXiv:hep-th/0011171 [hep-th]

    ADS  MATH  Google Scholar 

  368. Y.-T. Huang, A.E. Lipstein, Amplitudes of 3D and 6D maximal superconformal theories in supertwistor space. JHEP 1010, 007 (2010). arXiv:1004.4735 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

  369. B. Czech, Y.-T. Huang, M. Rozali, Chiral three-point interactions in 5 and 6 dimensions. JHEP 1210, 143 (2012). arXiv:1110.2791 [hep-th]

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I gratefully acknowledge T. Adamo, Z. Bern, B. Cerchiai, M. Chiodaroli, S. Deser, S. Ferrara, Y. Geyer, A. Hodges, C. M. Hull, H. Johansson, B. Julia, A. Luna, L. Mason, G. Mogull, R. Monteiro, A. Ochirov, D. O’Connell, R. Roiban, O. Schlotterer, W. Siegel, K. Stelle and C. White and for many helpful conversations and correspondences. I would especially like to thank my collaborators A. Anastansiou, M. J. Duff, M. J. Hughes, A. Marrani, S. Nagy and M. Zoccali. This work was supported by a Schrödinger Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Borsten.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borsten, L. Gravity as the square of gauge theory: a review. Riv. Nuovo Cim. 43, 97–186 (2020). https://doi.org/10.1007/s40766-020-00003-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40766-020-00003-6

Navigation