Skip to main content
Log in

α-Brass and (α + β) Brass Degradation Processes in Azrou Soil Medium Used in Plumbing Devices

  • Published:
Journal of Bio- and Tribo-Corrosion Aims and scope Submit manuscript

Abstract

In this paper, we will study the effect of soil engineering properties’ relationship on metal degradation of two series of brass alloys (brass devices). These two types of brass are an α-brass and α + β one. This work aims to specifying the best alloys which are recommended to be used in Azrou soil medium. This research paper was applied by using electrochemical impedance spectroscopy methods, polarization curves, scanning electron microscopy (SEM), and X-ray spectrometry microanalysis measurements. It was found that EC5 is the most resistant alloy between the three α-brasses and EC6 which is the most resistant alloy among the four α + β brasses in this soil type. The different alloy surfaces were examined by SEM, whereas the chemical composition was determined by EDAX analysis. Moreover, we have studied the role and effects of synergy on various additional elements which exist in different brasses and they are responsible for increasing the corrosion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Gerwin W, Baumhauer W (2000) Effect of soil parameters on the corrosion of archaeological metal finds. Geoderma 96:63–80

    Article  Google Scholar 

  2. Papadopoulou O, Vassiliou P, Grassini S, Angelini E, Gouda V (2016) Soil-induced corrosion of ancient Roman brass-case study. Mater Corros 67:160–169

    Article  Google Scholar 

  3. Tylecote RF (1979) The effect of soil conditions on the long-term corrosion of buried tin-bronzes and copper. J Archaesol Sci 6:345–368

    Article  Google Scholar 

  4. Neff D, Dillmann P, Bellot-Gurlet L, Beranger G (2005) Corrosion of iron archaeological artefacts in soil: characterisation of the corrosion system. Corros Sci 47:515–535

    Article  Google Scholar 

  5. Assouli B(2002) Etude par émission acoustique associée aux méthodes électrochimiques de la corrosion et de la protection de l’alliage cuivre-zinc (60/40) en milieu neutre et alcalin. Thesis, INPT

  6. Pechering HW (1983) Characteristic features of alloy polarization curves. Corrosi Sci 23:1107–1120

    Article  Google Scholar 

  7. Nicholas D (1994) Dezincification of brass in potable waters, UWRAA, Research Report No. 84

  8. Zou JY, Wang DH, Qiu WC (1997) Solid-state diffusion during the selective dissolution of brass: chronoamperometry and positron annihilation study. Electrochim Acta 42:1733

    Article  Google Scholar 

  9. Bowers JE, Oseland PWR, Davies GC (1978) Development of a Hot-stamping brass resistant to dezincification. Br Corros J 13:177

    Article  Google Scholar 

  10. Bengough GD, May R (1924) Seventh report to the corrosion research committee of the Institute of Metals. J Instrum Met 32:81

    Google Scholar 

  11. Toivanen RO, Hirvonen J, Lindroos VK (1985) Dezincification of boron implanted brass. Nucl Instrum Methods Phys Res B 7:200

    Article  Google Scholar 

  12. Fiaud C, Bensarsa S, Demesy I, Tzinmann M (1987) Inhibiting properties of phosphines against zinc corrosion in acidic media. Br Corros J 22:109

    Article  Google Scholar 

  13. Beccaria AM, Poggi G, Capannelli G (1989) The effect on the behavior of α-brasses in sea water of the addition of Al and Sn. Corros Prev Control 10:169

    Google Scholar 

  14. Hansen M, Anderko K, Salzberg HW (1958) Constitution of binary alloys. J Electrochem Soc 105:260C–261C

    Article  Google Scholar 

  15. Ogilvie I (1982) Recent developments in the production of dezincification resistant brass. Corros Coat S Afr 9:9–13

    Google Scholar 

  16. Bonneau M, Souchier B (1979) Constituants et propriétés du sol, Centre de pédologie biologique

  17. I S O (1991) Soil Quali@ -Terminology - Soil data structuration, AFNOR-Paris

  18. Barbalat M, Lanarde L, Caron D, Meyerb M, Vittonato J, Castillon F, Fontaine S, Refait Ph Ph (2012) Electrochemical study of the corrosion rate of carbon steel in soil: evolution with time and determination of residual corrosion rates under cathodic protection. Corros Sci 55:246–253

    Article  Google Scholar 

  19. Stern M, Geary AL (1957) Discussion of electrochemical polarization, 1. A theoretical Analysis of the shape of polarization curves. J Electrochem Soc 104:56–63

    Article  Google Scholar 

  20. Bouckamp BA (1993) Users manual equivalent circuit, ver. 4.51, faculty of chem. Tech., Universidad of Twente, The Netherlands

  21. Vazquez VM, Sánchez SR, Calvo EJ, Schiffrin DJ (1994) The electrochemical reduction of oxygen on polycrystalline copper in borax buffer. J Electroanal Chem 374:189–197

    Article  Google Scholar 

  22. Cere S, Vazquez M, Sanchez SR, Schiffrin DJ (2001) Surface redox catalysis and reduction kinetics of oxygen on copper–nickel alloys. J Electroanal Chem 505:118–124

    Article  Google Scholar 

  23. Metikoš-Huković M, Skugor I, Grubač Z, Babic R (2010) Complexities of corrosion behavior of copper–nickel alloys under liquid impingement conditions in saline water. Electrochim Acta 55:3123–3129

    Article  Google Scholar 

  24. Kear G, Barker BD, Stokes KR, Walsh FC (2004) Flow influenced electrochemical corrosion of nickel aluminium bronze–Part I. Cathodic polarization. J Appl Electrochem 34:1235–1240

    Article  Google Scholar 

  25. Sury P, Otswald HR (1972) On the corrosion behaviour of individual phases present in aluminium bronzes. Corros Sci 12:77–80

    Article  Google Scholar 

  26. Kear G, Barker BD, Stokes KR, Walsh FC (2004) Flow influenced electrochemical corrosion of nickel aluminium bronze–Part II. Anodic polarization and derivation of the mixed potential. J Appl Electrochem 34:1241–1248

    Article  Google Scholar 

  27. Procaccini R, Ceré S, Vázquez M (2009) Oxygen reduction on Cu–Zn alloys. J Appl Electrochem 39:177–184

    Article  Google Scholar 

  28. Chen B, Liang C, Fu D, Ren D (2005) Corrosion behavior of Cu and the Cu–Zn–Al shape memory alloy in simulated uterine fluid. Contraception 72:221–224

    Article  Google Scholar 

  29. Fink FW (1939) The dezincification of alpha brass with special reference to arsenic. Trans Electrochem Soc 75:441–448

    Article  Google Scholar 

  30. Bevolo AJ, Baikerikar KG, Hansen RS (1984) An Auger/SEM study of the corrosion of β-brass alloyed with tin. J Vac Sci Technol A 2:784–786

    Article  Google Scholar 

  31. Sohn S, Kang T (2002) The effects of tin and nickel on the corrosion behavior of 60Cu–40Zn alloys. J Alloys Compd 335:281–289

    Article  Google Scholar 

  32. Mazille H, Dabosi F, Beranger G, Baroux B (1994) Corrosion localisée. Editions de Physique, Paris, p 380

    Google Scholar 

  33. Chiavari C, Colledan A, Frignani A, Brunoro G (2006) Corrosion evaluation of traditional and new bronzes for artistic casting. Mater Chem Phys 95:252–259

    Article  Google Scholar 

  34. Amar H, Benzakour J, Derja A, Villemin D, Moreau B, Braisaz TJ (2006) Piperidin-1-yl-phosphonic acid and (4-phosphono-piperazin-1-yl) phosphonic acid: a new class of iron corrosion inhibitors in sodium chloride 3% media. Appl Surf Sci 252:6162–6172

    Article  Google Scholar 

  35. Jorcin JB (2007) Spectroscopie d’impédance électrochimique locale : caractérisation de la de lamination des peintures et de la corrosion des alliages Al–Cu, Thesis, INPT

  36. Barcia OE, D’Elia E, Frateur I, Mattos OR, Pébère N, Tribollet B (2002) Application of the impedance model of de Levie for the characterization of porous electrodes. Electrochim Acta 47:2109–2116

    Article  Google Scholar 

  37. Fiaud C (1995) Proceedings of the 8th European symposium on corrosion inhibitors (8 SEIC). Ann Univ Ferrara NS Sez V 10(Suppl N):929

    Google Scholar 

  38. Ammeloot F, Fiaud C, Sutter EMM (1999) Characterization of the oxide layers on a Cu–13Sn alloy in a NaCl aqueous solution without and with 0.1 M benzotriazole. Electrochemical and photo electrochemical contributions. Electrochim Acta 44:2549–2558

    Article  Google Scholar 

  39. Ismail KM, Badawy WA (2000) Electrochemical and XPS investigations of cobalt in KOH solutions. J Appl Electrochem 30:1303–1311

    Article  Google Scholar 

  40. Karpagavalli R, Balasubramaniam R (2007) Development of novel brasses to resist dezincification. Corros Sci 49(3):963–979

    Article  Google Scholar 

  41. Davies DD, MIM (1993) A note on the dezincification of brass and the inhibiting effect of elemental additions, Dip App Chem, 260 Madison Avenue New York, 10016

  42. Smathers DB (1990) A 15 superconductors. In: Metals handbook, 10th edn, vol 2. ASM International, p 1060–1076

  43. Hitzig J, Titz J, Juettner K, Lorenz WJ, Schmidt E (1984) Frequency response analysis of the Ag/Ag+ system: a partially active electrode approach. Electrochim Acta 29:287–296

    Article  Google Scholar 

  44. Hassairi H, Bousselmi L, Triki E, Ingo GM (2007) Assessment of the interphase behaviour of two bronze alloys in archaeological soil. Mater Corros 58:121–128

    Article  Google Scholar 

  45. Bin H, Pengju H, Chunhui L, Xiaohong B (2015) Effect of soil particle size on the corrosion behavior of natural gas pipeline. Eng Fail Anal 58:19–30

    Article  Google Scholar 

Download references

Acknowledgements

Authors are gratefully acknowledges National office of water and electricity (ONEE), Rabat, Morocco for the financial assistance and facilitation of our study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Galai or M. Ebn Touhami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galai, M., Ouassir, J., Ebn Touhami, M. et al. α-Brass and (α + β) Brass Degradation Processes in Azrou Soil Medium Used in Plumbing Devices. J Bio Tribo Corros 3, 30 (2017). https://doi.org/10.1007/s40735-017-0087-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40735-017-0087-y

Keywords

Navigation