Skip to main content
Log in

Degradation and Fate of Pharmaceutically Active Contaminants by Advanced Oxidation Processes

  • Water Pollution (S Sengupta and L Nghiem, Section Editors)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

The purpose of this review is to investigate the use of advanced oxidation processes (AOPs) including ozonation, UV photolysis, Fenton-type processes, UV/H2O2, and other photocatalytic processes to degrade persistent pharmaceutically active contaminants in water. The review focuses on four common pharmaceuticals carbamazepine (CBZ), diclofenac (DCF), sulfamethoxazole (SMX), and trimethoprim (TMP) which are used as exemplars. Insights into the removal efficiency of each compound by AOPs under various applied conditions are systematically elucidated. This review also investigates the fate of these pharmaceuticals during treatment by advanced oxidation treatment. The effectiveness of AOP processes for the degradation of pharmaceuticals varies significantly, depending on factors such as the nature of the process itself, operating conditions, and the target compound. Ozone can completely remove all four pharmaceuticals. By contrast, direct UV photolysis was effective for the removal of DCF and SMX, whereas the combination with H2O2 was essential to improve CBZ and TMP removal. In addition, a large number of transformation products were frequently detected during the degradation of the selected pharmaceuticals by AOPs. In addition, it has been confirmed that several transformation products were more resistant toward the applied AOPs than their original parent compounds. A major challenge with the use of AOPs for the degradation of the selected pharmaceutically active contaminants is the formation of by-products that are often more persistent than the original contaminants. Therefore, the existence of transformation products must be essentially investigated after the treatment of target pharmaceutical contaminants by AOPs in order to evaluate the effectiveness of the applied technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kümmerer K. The presence of pharmaceuticals in the environment due to human use—present knowledge and future challenges. J Environ Manag. 2009;90(8):2354–66. https://doi.org/10.1016/j.jenvman.2009.01.023.

    Article  CAS  Google Scholar 

  2. Jones OAH, Voulvoulis N, Lester JN. Human pharmaceuticals in the aquatic environment a review. Environ Technol. 2001;22(12):1383–94.

    Article  CAS  Google Scholar 

  3. Ternes TA, Meisenheimer M, McDowell D, Sacher F, Brauch HJ, Haist-Gulde B, et al. Removal of pharmaceuticals during drinking water treatment. Environ Sci Technol. 2002;36(17):3855–63.

    Article  CAS  Google Scholar 

  4. Miège C, Choubert JM, Ribeiro L, Eusèbe M, Coquery M. Fate of pharmaceuticals and personal care products in wastewater treatment plants—conception of a database and first results. Environ Pollut. 2009;157(5):1721–6. https://doi.org/10.1016/j.envpol.2008.11.045.

    Article  CAS  Google Scholar 

  5. Bendz D, Paxéus NA, Ginn TR, Loge FJ. Occurrence and fate of pharmaceutically active compounds in the environment, a case study: Höje River in Sweden. J Hazard Mater. 2005;122(3):195–204. https://doi.org/10.1016/j.jhazmat.2005.03.012.

    Article  CAS  Google Scholar 

  6. Luo Y, Guo W, Ngo HH, Nghiem LD, Hai FI, Zhang J, et al. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ. 2014;473–474:619–41. https://doi.org/10.1016/j.scitotenv.2013.12.065.

    Article  CAS  Google Scholar 

  7. Daughton CG, Ternes TA. Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect. 1999;107(SUPPL. 6):907–38.

    Article  CAS  Google Scholar 

  8. Jones OA, Lester JN, Voulvoulis N. Pharmaceuticals: a threat to drinking water? Trends Biotechnol. 2005;23(4):163–7.

    Article  CAS  Google Scholar 

  9. Dietrich DR, Webb SF, Petry T. Hot spot pollutants: pharmaceuticals in the environment. Toxicol Lett. 2002;131(1–2):1–3. https://doi.org/10.1016/S0378-4274(02)00062-0.

    Article  CAS  Google Scholar 

  10. Heberer T. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol Lett. 2002;131(1–2):5–17. https://doi.org/10.1016/S0378-4274(02)00041-3.

    Article  CAS  Google Scholar 

  11. Zhang Y, Geißen SU, Gal C. Carbamazepine and diclofenac: removal in wastewater treatment plants and occurrence in water bodies. Chemosphere. 2008;73(8):1151–61. https://doi.org/10.1016/j.chemosphere.2008.07.086.

    Article  CAS  Google Scholar 

  12. Heberer T. Tracking persistent pharmaceutical residues from municipal sewage to drinking water. J Hydrol. 2002;266(3–4):175–89.

    Article  CAS  Google Scholar 

  13. Kosjek T, Heath E, Kompare B. Removal of pharmaceutical residues in a pilot wastewater treatment plant. Anal Bioanal Chem. 2007;387(4):1379–87. https://doi.org/10.1007/s00216-006-0969-1.

    Article  CAS  Google Scholar 

  14. Mompelat S, Le Bot B, Thomas O. Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environ Int. 2009;35(5):803–14. https://doi.org/10.1016/j.envint.2008.10.008.

    Article  CAS  Google Scholar 

  15. Lienert J, Güdel K, Escher BI. Screening method for ecotoxicological hazard assessment of 42 pharmaceuticals considering human metabolism and excretory routes. Environ Sci Technol. 2007;41(12):4471–8. https://doi.org/10.1021/es0627693.

    Article  CAS  Google Scholar 

  16. Yang Y, Lu X, Jiang J, Ma J, Liu G, Cao Y, et al. Degradation of sulfamethoxazole by UV, UV/H2O2 and UV/persulfate (PDS): formation of oxidation products and effect of bicarbonate. Water Res. 2017;118:196–207. https://doi.org/10.1016/j.watres.2017.03.054.

    Article  CAS  Google Scholar 

  17. Al Aukidy M, Verlicchi P, Jelic A, Petrovic M, Barcelò D. Monitoring release of pharmaceutical compounds: occurrence and environmental risk assessment of two WWTP effluents and their receiving bodies in the Po Valley, Italy. Sci Total Environ. 2012;438:15–25. https://doi.org/10.1016/j.scitotenv.2012.08.061.

    Article  CAS  Google Scholar 

  18. Morasch B, Bonvin F, Reiser H, Grandjean D, De Alencastro LF, Perazzolo C, et al. Occurrence and fate of micropollutants in the Vidy Bay of Lake Geneva, Switzerland. Part II: micropollutant removal between wastewater and raw drinking water. Environ Toxicol Chem. 2010;29(8):1658–68. https://doi.org/10.1002/etc.222.

    CAS  Google Scholar 

  19. Padhye LP, Yao H, Kung'u FT, Huang CH. Year-long evaluation on the occurrence and fate ofpharmaceuticals, personal care products, andendocrine disrupting chemicals in an urban drinking water treatment plant. Water Res. 2014;51:266–76. https://doi.org/10.1016/j.watres.2013.10.070.

    Article  CAS  Google Scholar 

  20. Ratola N, Cincinelli A, Alves A, Katsoyiannis A. Occurrence of organic microcontaminants in the wastewater treatment process. A mini review. J Hazard Mater. 2012;239-240:1–18. https://doi.org/10.1016/j.jhazmat.2012.05.040.

    Article  CAS  Google Scholar 

  21. Santos LHMLM, Araújo AN, Fachini A, Pena A, Delerue-Matos C, Montenegro MCBSM. Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. J Hazard Mater. 2010;175(1–3):45–95. https://doi.org/10.1016/j.jhazmat.2009.10.100.

    Article  CAS  Google Scholar 

  22. Bartelt-Hunt S, Snow DD, Damon-Powell T, Miesbach D. Occurrence of steroid hormones and antibiotics in shallow groundwater impacted by livestock waste control facilities. J Contam Hydrol. 2011;123(3–4):94–103. https://doi.org/10.1016/j.jconhyd.2010.12.010.

    Article  CAS  Google Scholar 

  23. Pruden A, Pei R, Storteboom H, Carlson KH. Antibiotic resistance genes as emerging contaminants: studies in northern Colorado. Environ Sci Technol. 2006;40(23):7445–50. https://doi.org/10.1021/es060413l.

    Article  CAS  Google Scholar 

  24. Pounds N, Maclean S, Webley M, Pascoe D, Hutchinson T. Acute and chronic effects of ibuprofen in the mollusc Planorbis carinatus (Gastropoda: Planorbidae). Ecotoxicol Environ Saf. 2008;70(1):47–52. https://doi.org/10.1016/j.ecoenv.2007.07.003.

    Article  CAS  Google Scholar 

  25. Ghosh S, LaPara TM. The effects of subtherapeutic antibiotic use in farm animals on the proliferation and persistence of antibiotic resistance among soil bacteria. ISME J. 2007;1(3):191–203. https://doi.org/10.1038/ismej.2007.31.

    Article  CAS  Google Scholar 

  26. Fent K, Weston AA, Caminada D. Ecotoxicology of human pharmaceuticals. Aquat Toxicol. 2006;76(2):122–59. https://doi.org/10.1016/j.aquatox.2005.09.009.

    Article  CAS  Google Scholar 

  27. Zhang XX, Zhang T, Fang HHP. Antibiotic resistance genes in water environment. Appl Microbiol Biotechnol. 2009;82(3):397–414. https://doi.org/10.1007/s00253-008-1829-z.

    Article  CAS  Google Scholar 

  28. Schwaiger J, Ferling H, Mallow U, Wintermayr H, Negele RD. Toxic effects of the non-steroidal anti-inflammatory drug diclofenac. Part I: histopathological alterations and bioaccumulation in rainbow trout. Aquat Toxicol. 2004;68(2):141–50. https://doi.org/10.1016/j.aquatox.2004.03.014.

    Article  CAS  Google Scholar 

  29. Triebskorn R, Casper H, Heyd A, Eikemper R, Köhler HR, Schwaiger J. Toxic effects of the non-steroidal anti-inflammatory drug diclofenac: part II. Cytological effects in liver, kidney, gills and intestine of rainbow trout (Oncorhynchus mykiss). Aquat Toxicol. 2004;68(2):151–66. https://doi.org/10.1016/j.aquatox.2004.03.015.

    Article  CAS  Google Scholar 

  30. Hoeger B, Köllner B, Dietrich DR, Hitzfeld B. Water-borne diclofenac affects kidney and gill integrity and selected immune parameters in brown trout (Salmo trutta f. fario). Aquat Toxicol. 2005;75(1):53–64. https://doi.org/10.1016/j.aquatox.2005.07.006.

    Article  CAS  Google Scholar 

  31. Cleuvers M. Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects. Toxicol Lett. 2003;142(3):185–94. https://doi.org/10.1016/S0378-4274(03)00068-7.

    Article  CAS  Google Scholar 

  32. Borgmann U, Bennie DT, Ball AL, Palabrica V. Effect of a mixture of seven pharmaceuticals on Hyalella azteca over multiple generations. Chemosphere. 2007;66(7):1278–83. https://doi.org/10.1016/j.chemosphere.2006.07.025.

    Article  CAS  Google Scholar 

  33. Eguchi K, Nagase H, Ozawa M, Endoh YS, Goto K, Hirata K, et al. Evaluation of antimicrobial agents for veterinary use in the ecotoxicity test using microalgae. Chemosphere. 2004;57(11):1733–8. https://doi.org/10.1016/j.chemosphere.2004.07.017.

    Article  CAS  Google Scholar 

  34. Shu Z, Singh A, Klamerth N, McPhedran K, Bolton JR, Belosevic M, et al. Pilot-scale UV/H2O2 advanced oxidation process for municipal reuse water: assessing micropollutant degradation and estrogenic impacts on goldfish (Carassius auratus L.). Water Res. 2016;101:157–66. https://doi.org/10.1016/j.watres.2016.05.079.

    Article  CAS  Google Scholar 

  35. Klavarioti M, Mantzavinos D, Kassinos D. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ Int. 2009;35(2):402–17. https://doi.org/10.1016/j.envint.2008.07.009.

    Article  CAS  Google Scholar 

  36. Alharbi SK, Price WE, Kang J, Fujioka T, Nghiem LD. Ozonation of carbamazepine, diclofenac, sulfamethoxazole and trimethoprim and formation of major oxidation products. Desalin Water Treat. 2016;57:1–12. https://doi.org/10.1080/19443994.2016.1172986.

  37. Alharbi SK, Kang J, Nghiem LD, van de Merwe JP, Leusch FDL, Price WE. Photolysis and UV/H2O2 of diclofenac, sulfamethoxazole, carbamazepine, and trimethoprim: identification of their major degradation products by ESI–LC–MS and assessment of the toxicity of reaction mixtures. Process Saf Environ Prot. 2017; https://doi.org/10.1016/j.psep.2017.07.015.

  38. Mohapatra DP, Brar SK, Daghrir R, Tyagi RD, Picard P, Surampalli RY, et al. Photocatalytic degradation of carbamazepine in wastewater by using a new class of whey-stabilized nanocrystalline TiO2 and ZnO. Sci Total Environ. 2014;485–486:263–9. https://doi.org/10.1016/j.scitotenv.2014.03.089.

    Article  CAS  Google Scholar 

  39. Monsalvo VM, Lopez J, Munoz M, de Pedro ZM, Casas JA, Mohedano AF, et al. Application of Fenton-like oxidation as pre-treatment for carbamazepine biodegradation. Chem Eng J. 2015;264:856–62. https://doi.org/10.1016/j.cej.2014.11.141.

    Article  CAS  Google Scholar 

  40. Lee HJ, Lee H, Lee C. Degradation of diclofenac and carbamazepine by the copper(II)-catalyzed dark and photo-assisted Fenton-like systems. Chem Eng J. 2014;245:258–64. https://doi.org/10.1016/j.cej.2014.02.037.

    Article  CAS  Google Scholar 

  41. Martins RC, Dantas RF, Sans C, Esplugas S, Quinta-Ferreira RM. Ozone/H2O2 performance on the degradation of sulfamethoxazole. Ozone Sci Eng. 2015;37(6):509–17. https://doi.org/10.1080/01919512.2015.1053427.

    Article  CAS  Google Scholar 

  42. Liu N, Zheng M, Sijak S, Tang L, Xu G, Wu M. Aquatic photolysis of carbamazepine by UV/H2O2 and UV/Fe(II) processes. Res Chem Intermed. 2015;41(10):7015–28. https://doi.org/10.1007/s11164-014-1795-2.

    Article  CAS  Google Scholar 

  43. Ahmed O, Pons MN, Lachheb H, Houas A, Zahraa O. Degradation of sulfamethoxazole by photocatalysis using supported TiO2. Sustain Environ Res. 2014;24(5):381–7.

    CAS  Google Scholar 

  44. Glaze WH, Kang JW, Chapin DH. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Sci Eng. 1987;9(4):335–52. https://doi.org/10.1080/01919518708552148.

    Article  CAS  Google Scholar 

  45. Oturan MA, Aaron JJ. Advanced oxidation processes in water/wastewater treatment: Principles and applications. A review. Crit Rev Environ Sci Technol. 2014;44(23):2577–641. https://doi.org/10.1080/10643389.2013.829765.

    Article  CAS  Google Scholar 

  46. Boczkaj G, Fernandes A. Wastewater treatment by means of advanced oxidation processes at basic pH conditions: a review. Chem Eng J. 2017;320:608–33. https://doi.org/10.1016/j.cej.2017.03.084.

    Article  CAS  Google Scholar 

  47. Shahidi D, Roy R, Azzouz A. Advances in catalytic oxidation of organic pollutants—prospects for thorough mineralization by natural clay catalysts. Appl Catal B Environ. 2015;174–175:277–92. https://doi.org/10.1016/j.apcatb.2015.02.042.

    Article  CAS  Google Scholar 

  48. Poyatos JM, Muñio MM, Almecija MC, Torres JC, Hontoria E, Osorio F. Advanced oxidation processes for wastewater treatment: state of the art. Water Air Soil Pollut. 2009;205(1):187. https://doi.org/10.1007/s11270-009-0065-1.

    Google Scholar 

  49. Navalon S, Alvaro M, Garcia H. Heterogeneous Fenton catalysts based on clays, silicas and zeolites. Appl Catal B Environ. 2010;99(1–2):1–26. https://doi.org/10.1016/j.apcatb.2010.07.006.

    Article  CAS  Google Scholar 

  50. Brillas E, Sirés I, Oturan MA. Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem Rev. 2009;109(12):6570–631. https://doi.org/10.1021/cr900136g.

    Article  CAS  Google Scholar 

  51. Panizza M, Cerisola G. Direct and mediated anodic oxidation of organic pollutants. Chem Rev. 2009;109(12):6541–69. https://doi.org/10.1021/cr9001319.

    Article  CAS  Google Scholar 

  52. Ganiyu SO, van Hullebusch ED, Cretin M, Esposito G, Oturan MA. Coupling of membrane filtration and advanced oxidation processes for removal of pharmaceutical residues: a critical review. Sep Purif Technol. 2015;156(Part 3):891–914. https://doi.org/10.1016/j.seppur.2015.09.059.

    Article  CAS  Google Scholar 

  53. Huber MM, Canonica S, Park GY, Von Gunten U. Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environ Sci Technol. 2003;37(5):1016–24.

    Article  CAS  Google Scholar 

  54. Vieno NM, Härkki H, Tuhkanen T, Kronberg L. Occurrence of pharmaceuticals in river water and their elimination in a pilot-scale drinking water treatment plant. Environ Sci Technol. 2007;41(14):5077–84. https://doi.org/10.1021/es062720x.

    Article  CAS  Google Scholar 

  55. Dantas RF, Contreras S, Sans C, Esplugas S. Sulfamethoxazole abatement by means of ozonation. J Hazard Mater. 2008;150(3):790–4. https://doi.org/10.1016/j.jhazmat.2007.05.034.

    Article  CAS  Google Scholar 

  56. Beltrán FJ, Aguinaco A, García-Araya JF. Mechanism and kinetics of sulfamethoxazole photocatalytic ozonation in water. Water Res. 2009;43(5):1359–69. https://doi.org/10.1016/j.watres.2008.12.015.

    Article  CAS  Google Scholar 

  57. Beltrán FJ, Aguinaco A, García-Araya JF, Oropesa A. Ozone and photocatalytic processes to remove the antibiotic sulfamethoxazole from water. Water Res. 2008;42(14):3799–808.

    Article  CAS  Google Scholar 

  58. Gottschalk C, Libra JA, Saupe A. Ozonation of water and waste water : a practical guide to understanding ozone and its applications / Christiane Gottschalk, Judy Ann Libra, and Adrian Saupe. Weinheim: Wiley-VCH, c2010. 2nd completely rev. and updated ed.; 2010.

  59. Wei C, Zhang F, Hu Y, Feng C, Wu H. Ozonation in water treatment: the generation, basic properties of ozone and its practical application. Rev Chem Eng. 2017;33(1):49–89. https://doi.org/10.1515/revce-2016-0008.

    Article  CAS  Google Scholar 

  60. Puspita P, Roddick F, Porter N. Efficiency of sequential ozone and UV-based treatments for the treatment of secondary effluent. Chem Eng J. 2015;268:337–47. https://doi.org/10.1016/j.cej.2015.01.077.

    Article  CAS  Google Scholar 

  61. Abu Amr SS, Aziz HA, Adlan MN. Optimization of stabilized leachate treatment using ozone/persulfate in the advanced oxidation process. Waste Manag. 2013;33(6):1434–41. https://doi.org/10.1016/j.wasman.2013.01.039.

    Article  CAS  Google Scholar 

  62. Snyder SA. Removal of EDCs and pharmaceuticals in drinking and reuse treatment processes. Denver: Awwa Research Foundation, American Water Works Association, IWA Publishing; 2007.

    Google Scholar 

  63. Hübner U, von Gunten U, Jekel M. Evaluation of the persistence of transformation products from ozonation of trace organic compounds—a critical review. Water Res. 2015;68:150–70. https://doi.org/10.1016/j.watres.2014.09.051.

    Article  CAS  Google Scholar 

  64. Nöthe T, Fahlenkamp H, Von Sonntag C. Ozonation of wastewater: rate of ozone consumption and hydroxyl radical yield. Environ Sci Technol. 2009;43(15):5990–5. https://doi.org/10.1021/es900825f.

    Article  CAS  Google Scholar 

  65. Gerrity D, Gamage S, Holady JC, Mawhinney DB, Quiñones O, Trenholm RA, et al. Pilot-scale evaluation of ozone and biological activated carbon for trace organic contaminant mitigation and disinfection. Water Res. 2011;45(5):2155–65. https://doi.org/10.1016/j.watres.2010.12.031.

    Article  CAS  Google Scholar 

  66. Pocostales JP, Sein MM, Knolle W, Von Sonntag C, Schmidt TC. Degradation of ozone-refractory organic phosphates in wastewater by ozone and ozone/hydrogen peroxide (peroxone): the role of ozone consumption by dissolved organic matter. Environ Sci Technol. 2010;44(21):8248–53. https://doi.org/10.1021/es1018288.

    Article  CAS  Google Scholar 

  67. Staehelin J, Hoigne J. Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions. Environ Sci Technol. 1985;19(12):1206–13.

    Article  CAS  Google Scholar 

  68. Kosjek T, Heath E. Applications of mass spectrometry to identifying pharmaceutical transformation products in water treatment. Trends Anal Chem; TrAC. 2008;27(10):807–20.

    Article  CAS  Google Scholar 

  69. Nebout P, Cagnon B, Delpeux S, Di Giusto A, Chedeville O. Comparison of the efficiency of adsorption, ozonation, and ozone/activated carbon coupling for the removal of pharmaceuticals from water. J Environ Eng. 2016;142(2):04015074–7. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001042.

  70. Ribeiro AR, Nunes OC, Pereira MFR, Silva AMT. An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU. Environ Int. 2015;75:33–51. https://doi.org/10.1016/j.envint.2014.10.027.

    Article  CAS  Google Scholar 

  71. Tekin H, Bilkay O, Ataberk SS, Balta TH, Ceribasi IH, Sanin FD, et al. Use of Fenton oxidation to improve the biodegradability of a pharmaceutical wastewater. J Hazard Mater. 2006;136(2):258–65. https://doi.org/10.1016/j.jhazmat.2005.12.012.

    Article  CAS  Google Scholar 

  72. Facile N, Barbeau B, Prévost M, Koudjonou B. Evaluating bacterial aerobic spores as a surrogate for Giardia and Cryptosporidium inactivation by ozone. Water Res. 2000;34(12):3238–46.

    Article  CAS  Google Scholar 

  73. McDowell DC, Huber MM, Wagner M, Von Gunten U, Ternes TA. Ozonation of carbamazepine in drinking water: identification and kinetic study of major oxidation products. Environ Sci Technol. 2005;39(20):8014–22.

    Article  CAS  Google Scholar 

  74. Zwiener C. Occurrence and analysis of pharmaceuticals and their transformation products in drinking water treatment. Anal Bioanal Chem. 2007;387(4):1159–62.

    Article  CAS  Google Scholar 

  75. Elmolla ES, Chaudhuri M. Comparison of different advanced oxidation processes for treatment of antibiotic aqueous solution. Desalination. 2010;256(1–3):43–7. https://doi.org/10.1016/j.desal.2010.02.019.

    Article  CAS  Google Scholar 

  76. Legrini O, Oliveros E, Braun AM. Photochemical processes for water treatment. Chem Rev. 1993;93(2):671–98.

    Article  CAS  Google Scholar 

  77. Pereira VJ, Weinberg HS, Linden KG, Singer PC. UV degradation kinetics and modeling of pharmaceutical compounds in laboratory grade and surface water via direct and indirect photolysis at 254 nm. Environ Sci Technol. 2007;41(5):1682–8.

    Article  CAS  Google Scholar 

  78. Packer JL, Werner JJ, Latch DE, McNeill K, Arnold WA. Photochemical fate of pharmaceuticals in the environment: naproxen, diclofenac, clofibric acid, and ibuprofen. Aquat Sci. 2003;65(4):342–51. https://doi.org/10.1007/s00027-003-0671-8.

    Article  CAS  Google Scholar 

  79. Lam MW, Tantuco K, Mabury SA. PhotoFate: a new approach in accounting for the contribution of indirect photolysis of pesticides and pharmaceuticals in surface waters. Environ Sci Technol. 2003;37(5):899–907. https://doi.org/10.1021/es025902+.

    Article  CAS  Google Scholar 

  80. Challis JK, Hanson ML, Friesen KJ, Wong CS. A critical assessment of the photodegradation of pharmaceuticals in aquatic environments: defining our current understanding and identifying knowledge gaps. Environ Sci: Processes Impacts. 2014;16(4):672–96. https://doi.org/10.1039/c3em00615h.

    CAS  Google Scholar 

  81. Vilhunen S, Vilve M, Vepsäläinen M, Sillanpää M. Removal of organic matter from a variety of water matrices by UV photolysis and UV/H2O2 method. J Hazard Mater. 2010;179(1–3):776–82. https://doi.org/10.1016/j.jhazmat.2010.03.070.

    Article  CAS  Google Scholar 

  82. Crittenden JC, Hu S, Hand DW, Green SA. A kinetic model for H2O2/UV process in a completely mixed batch reactor. Water Res. 1999;33(10):2315–28. https://doi.org/10.1016/S0043-1354(98)00448-5.

    Article  CAS  Google Scholar 

  83. Katsoyiannis IA, Canonica S, von Gunten U. Efficiency and energy requirements for the transformation of organic micropollutants by ozone, O3/H2O2 and UV/H2O2. Water Res. 2011;45(13):3811–22. https://doi.org/10.1016/j.watres.2011.04.038.

    Article  CAS  Google Scholar 

  84. Neyens E, Baeyens J. A review of classic Fenton’s peroxidation as an advanced oxidation technique. J Hazard Mater. 2003;98(1–3):33–50. https://doi.org/10.1016/S0304-3894(02)00282-0.

    Article  CAS  Google Scholar 

  85. Pereira VJ, Linden KG, Weinberg HS. Evaluation of UV irradiation for photolytic and oxidative degradation of pharmaceutical compounds in water. Water Res. 2007;41(19):4413–23.

    Article  CAS  Google Scholar 

  86. Vogna D, Marotta R, Andreozzi R, Napolitano A, D'Ischia M. Kinetic and chemical assessment of the UV/H2O2 treatment of antiepileptic drug carbamazepine. Chemosphere. 2004;54(4):497–505.

    Article  CAS  Google Scholar 

  87. Saquib M, Abu Tariq M, Haque MM, Muneer M. Photocatalytic degradation of disperse blue 1 using UV/TiO2/H2O2 process. J Environ Manag. 2008;88(2):300–6. https://doi.org/10.1016/j.jenvman.2007.03.012.

    Article  CAS  Google Scholar 

  88. Abellán MN, Giménez J, Esplugas S. Photocatalytic degradation of antibiotics: the case of sulfamethoxazole and trimethoprim. Catal Today. 2009;144(1–2):131–6. https://doi.org/10.1016/j.cattod.2009.01.051.

    Article  CAS  Google Scholar 

  89. Dalrymple OK. Removing pharmaceuticals and endocrine-disrupting compounds from wastewater by photocatalysis. J Chem Technol Biotechnol. 1986;82(2):121–34. https://doi.org/10.1002/jctb.1657.

    Article  CAS  Google Scholar 

  90. Mirzaei A, Chen Z, Haghighat F, Yerushalmi L. Removal of pharmaceuticals from water by homo/heterogonous Fenton-type processes—a review. Chemosphere. 2017;174:665–88. https://doi.org/10.1016/j.chemosphere.2017.02.019.

    Article  CAS  Google Scholar 

  91. Kavitha V, Palanivelu K. The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol. Chemosphere. 2004;55(9):1235–43. https://doi.org/10.1016/j.chemosphere.2003.12.022.

    Article  CAS  Google Scholar 

  92. Pérez-Estrada LA, Malato S, Gernjak W, Agüera A, Thurman EM, Ferrer I, et al. Photo-fenton degradation of diclofenac: Identification of main intermediates and degradation pathway. Environ Sci Technol. 2005;39(21):8300–6.

    Article  CAS  Google Scholar 

  93. Herney-Ramirez J, Vicente MA, Madeira LM. Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment: a review. Appl Catal B Environ. 2010;98(1–2):10–26. https://doi.org/10.1016/j.apcatb.2010.05.004.

    Article  CAS  Google Scholar 

  94. Hermosilla D, Cortijo M, Huang CP. Optimizing the treatment of landfill leachate by conventional Fenton and photo-Fenton processes. Sci Total Environ. 2009;407(11):3473–81. https://doi.org/10.1016/j.scitotenv.2009.02.009.

    Article  CAS  Google Scholar 

  95. Guo R, Xie X, Chen J. The degradation of antibiotic amoxicillin in the Fenton-activated sludge combined system. Environ Technol (UK). 2015;36(7):844–51. https://doi.org/10.1080/09593330.2014.963696.

    Article  CAS  Google Scholar 

  96. Kuan CC, Chang SY, Schroeder SLM. Fenton-like oxidation of 4-chlorophenol: homogeneous or heterogeneous? Ind Eng Chem Res. 2015;54(33):8122–9. https://doi.org/10.1021/acs.iecr.5b02378.

    Article  CAS  Google Scholar 

  97. Rahim Pouran S, Abdul Aziz AR, Wan Daud WMA. Review on the main advances in photo-Fenton oxidation system for recalcitrant wastewaters. J Ind Eng Chem. 2015;21:53–69. https://doi.org/10.1016/j.jiec.2014.05.005.

    Article  CAS  Google Scholar 

  98. Bautitz IR, Nogueira RFP. Degradation of tetracycline by photo-Fenton process—solar irradiation and matrix effects. J Photochem Photobiol A Chem. 2007;187(1):33–9. https://doi.org/10.1016/j.jphotochem.2006.09.009.

    Article  CAS  Google Scholar 

  99. Kasiri MB, Aleboyeh H, Aleboyeh A. Degradation of Acid Blue 74 using Fe-ZSM5 zeolite as a heterogeneous photo-Fenton catalyst. Appl Catal B Environ. 2008;84(1–2):9–15. https://doi.org/10.1016/j.apcatb.2008.02.024.

    Article  CAS  Google Scholar 

  100. Pérez-Estrada LA, Maldonado MI, Gernjak W, Agüera A, Fernández-Alba AR, Ballesteros MM, et al. Decomposition of diclofenac by solar driven photocatalysis at pilot plant scale. Catal Today. 2005;101(3–4):219–26. https://doi.org/10.1016/j.cattod.2005.03.013.

    Article  CAS  Google Scholar 

  101. Hartmann M, Kullmann S, Keller H. Wastewater treatment with heterogeneous Fenton-type catalysts based on porous materials. J Mater Chem. 2010;20(41):9002–17. https://doi.org/10.1039/c0jm00577k.

    Article  CAS  Google Scholar 

  102. Hübner U, Seiwert B, Reemtsma T, Jekel M. Ozonation products of carbamazepine and their removal from secondary effluents by soil aquifer treatment—indications from column experiments. Water Res. 2014;49(1):34–43. https://doi.org/10.1016/j.watres.2013.11.016.

    Article  CAS  Google Scholar 

  103. Hama Aziz KH, Miessner H, Mueller S, Kalass D, Moeller D, Khorshid I, et al. Degradation of pharmaceutical diclofenac and ibuprofen in aqueous solution, a direct comparison of ozonation, photocatalysis, and non-thermal plasma. Chem Eng J. 2017;313:1033–41. https://doi.org/10.1016/j.cej.2016.10.137.

    Article  CAS  Google Scholar 

  104. Kuang J, Huang J, Wang B, Cao Q, Deng S, Yu G. Ozonation of trimethoprim in aqueous solution: identification of reaction products and their toxicity. Water Res. 2013;47(8):2863.

    Article  CAS  Google Scholar 

  105. Martínez C, Canle LM, Fernández MI, Santaballa JA, Faria J. Aqueous degradation of diclofenac by heterogeneous photocatalysis using nanostructured materials. Appl Catal B Environ. 2011;107(1–2):110–8. https://doi.org/10.1016/j.apcatb.2011.07.003.

    Article  CAS  Google Scholar 

  106. Perisic DJ, Kovacic M, Kusic H, Stangar UL, Marin V, Bozic AL. Comparative analysis of UV-C/H2O2 and UV-A/TiO2 processes for the degradation of diclofenac in water. React Kinet Mech Catal. 2016;118(2):451–62. https://doi.org/10.1007/s11144-016-1027-4.

    Article  CAS  Google Scholar 

  107. Kim JR, Kan E. Heterogeneous photocatalytic degradation of sulfamethoxazole in water using a biochar-supported TiO2 photocatalyst. J Environ Manag. 2016;180:94–101. https://doi.org/10.1016/j.jenvman.2016.05.016.

    Article  CAS  Google Scholar 

  108. Cai Q, Hu J. Decomposition of sulfamethoxazole and trimethoprim by continuous UVA/LED/TiO2 photocatalysis: decomposition pathways, residual antibacterial activity and toxicity. J Hazard Mater. 2017;323:527–36. https://doi.org/10.1016/j.jhazmat.2016.06.006.

    Article  CAS  Google Scholar 

  109. Domínguez JR, González T, Palo P, Cuerda-Correa EM. Advanced photochemical oxidation of emergent micropollutants: carbamazepine. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2014;49(9):988–97. https://doi.org/10.1080/10934529.2014.894840.

    Article  CAS  Google Scholar 

  110. Tokumura M, Sugawara A, Raknuzzaman M, Habibullah-Al-Mamun M, Masunaga S. Comprehensive study on effects of water matrices on removal of pharmaceuticals by three different kinds of advanced oxidation processes. Chemosphere. 2016;159:317–25. https://doi.org/10.1016/j.chemosphere.2016.06.019.

    Article  CAS  Google Scholar 

  111. Prakash C, Shaffer CL, Nedderman A. Analytical strategies for identifying drug metabolites. Mass Spectrom Rev. 2007;26(3):340–69.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

PhD Scholarship support from Taibah University, Saudi Arabia, to Sultan Alharbi is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William E. Price.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

This article is part of the topical collection on Water Pollution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alharbi, S.K., Price, W.E. Degradation and Fate of Pharmaceutically Active Contaminants by Advanced Oxidation Processes. Curr Pollution Rep 3, 268–280 (2017). https://doi.org/10.1007/s40726-017-0072-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-017-0072-6

Keywords

Navigation