Skip to main content

Advertisement

Log in

Associations of prematurity and low birth weight with blood pressure and kidney function in middle-aged participants of the Brazilian Longitudinal Study of Adult Health: ELSA-Brasil

  • Original Article
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

Background

An adverse intrauterine environment reflected by low birth weight (LBW) and prematurity may induce fetal programming that favors kidney dysfunction in adulthood. We examined the association of LBW and prematurity with blood pressure (BP) and kidney function markers in non-diabetic, middle-aged adults without kidney disease from the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil).

Methods

A cross-sectional analysis of 768 subjects aged 35–54 years was conducted. Comparisons were performed according to self-reported birth weight: LBW (< 2.5 kg) or normal birth weight (2.5–4.0 kg). Associations of LBW and prematurity with BP levels and kidney function markers "(estimated glomerular filtration rate [eGFR], albumin-creatinine ratio [ACR] and serum cystatin-C) were tested by multiple linear regression using adjustments based on Directed Acyclic Graphs. Propensity score matching was applied to control imbalances.

Results

Mean age of participants was 45.5 ± 4.6 years and 56.8% were female; 64 (8.3%) participants reported LBW and 39 (5.0%) prematurity. The LBW group had higher systolic (p = 0.015) and diastolic BP (p = 0.014) and ACR values (p = 0.031) and lower eGFR (p = 0.015) than the normal birth weight group, but no group difference for cystatin-C was found. The preterm group had higher mean levels of systolic and diastolic BP, but no difference in kidney function markers was evident. In a regression model adjusted for sex, skin color and family history of hypertension, both systolic and diastolic BP levels were associated with LBW, but this association disappeared after adding for prematurity, which remained associated with BP (p = 0.017). Having applied a propensity score matching, LBW was associated with ACR values (p = 0.003), but not with eGFR or BP levels.

Conclusion

The study findings of independent associations of prematurity with higher BP levels, and of LBW with markers of kidney function in adulthood, support that early life events may predict risk for hypertension and kidney dysfunction in adulthood. The study design precluded the inferring of causality, and prospective studies are needed to further investigate this hypothesis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The original contributions presented in the study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding author.

References

  1. Barker DJ, Fall CH (1993) Fetal and infant origins of cardiovascular disease. Arch Dis Child 68(6):797–799. https://doi.org/10.1136/adc.68.6.797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jaddoe WV, Witterman JCM (2006) Hypotheses on the fetal origins of adult diseases: Contributions of epidemiological studies. Eur J of Epidemiol 21:91–102. https://doi.org/10.1007/s10654-005-5924-5

    Article  Google Scholar 

  3. Wilcox AJ (2001) On the importance and the unimportance of birthweight. Int J Epidemiol 30:1233–1241. https://doi.org/10.1093/ije/30.6.1233

    Article  CAS  PubMed  Google Scholar 

  4. WHO (2014) Low birth weight policy brief 2014. Global nutrition targets 2025. World Health Organization, Geneva

    Google Scholar 

  5. de Souza Buriol VC, Hirakata V, Goldani MZ, da Silva CH (2016) Temporal evolution of the risk factors associated with low birth weight rates in Brazilian capitals (1996–2011). Popul Health Metr 14:15. https://doi.org/10.1186/s12963-016-0086-0

    Article  PubMed  PubMed Central  Google Scholar 

  6. Würtz P, Wang Q, Niironen M, Tynkkynen T, Tiainen M, Drenos F et al (2016) Metabolic signatures of birthweight in 18 288 adolescents and adults. A meta-analysis. Int J Epidemiol 45(5):1539–1550. https://doi.org/10.1093/ije/dyw255

    Article  PubMed  PubMed Central  Google Scholar 

  7. Das SK, Mannan M, Faruque ASG, Ahmed T, Mcintyre HD, Mamun AA (2016) Effect of birth weight on adulthood renal fuction: a bias-adjusted meta-analytic approach. Nephrology 21(7):547–565. https://doi.org/10.1111/nep.12732

    Article  CAS  PubMed  Google Scholar 

  8. Zhao M, Shu XO, Jin F, Yang G, Li HL, Liu DK, Wen W, Gao YT, Zheng W (2002) Birthweight, childhood growtha and hypertension in adulthood. Int J Epidemiol 31(5):1043–1051. https://doi.org/10.1093/ije/31.5.1043

    Article  PubMed  Google Scholar 

  9. Alexander BT, Dasinger JH, Intapad S (2015) Fetal programming and cardiovascular pathology. Compr Physiol 5(2):997–1025. https://doi.org/10.1002/cphy.c140036

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jansson T, Lambert GW (1999) Effect of intrauterine growth restriction on blood pressure, glucose tolerance and sympathetic nervous system activity in the rat at 3–4 months age. J Hypertens 17:1239–1248. https://doi.org/10.1097/00004872-199917090-00002

    Article  CAS  PubMed  Google Scholar 

  11. Franco MCP, Casarini DE, Carneiro-Ramos MS, Sawaya AL, Barreto-Chaves MLM, Sesso R (2008) Circulating renin-angiotensin system and catecholamines in childhood: is there a role for birthweight? Clin Sci (Lond) 114(5):375–380. https://doi.org/10.1042/CS20070284

    Article  CAS  PubMed  Google Scholar 

  12. Martinez-Aguayo A, Aglony M, Bancalari R, Avalos C, Bolte L, Garcia H, Loureiro C, Carvajal C, Campino C, Inostroza A, Fardella C (2012) Birth weight is inversely associated with blood pressure and serum aldosterone and cortisol levels in children. Clin Endocrinol (Oxf) 76(5):713–718. https://doi.org/10.1111/j.1365-2265.2011.04308.x

    Article  CAS  PubMed  Google Scholar 

  13. Boguszewski MCS, Johannsson G, Fortes LC, Sverrisdottir YB (2004) Low birth size and final height predict high sympathetic nerve activity in adulthood. J Hypertens 22(6):1157–1163. https://doi.org/10.1097/00004872-200406000-00017

    Article  CAS  PubMed  Google Scholar 

  14. Hinchliffe SA, Sargent PH, Howard CV, Chan YF, Velzen DV (1991) Human intrauterine renal growth expressed in absolute number of glomeruli assessed by the disector method and Cavalieri principle. Lab Invest 64(6):777–784

    CAS  PubMed  Google Scholar 

  15. Black MJ, Sutherland MR, Gubhaju L, Kent AL, Dahlstrom JE, Moore L (2013) When birth comes early: effects on nephrogenesis. Nephrology (Carlton) 18:180–182. https://doi.org/10.1111/nep.12028

    Article  PubMed  Google Scholar 

  16. Lucas SR, Costa Silva VL, Miraglia SM, Zaladek Gil F (1997) Functional and morphometric evaluation of offpring kidney after intrauterine undernutrition. Pediatr Nephrol 11(6):719–723. https://doi.org/10.1007/s004670050374

    Article  CAS  PubMed  Google Scholar 

  17. Luyckx VA, Brenner BM (2005) Low birth weight, nephron number and kidney disease. Kidney Int Suppl 97:S68-77. https://doi.org/10.1111/j.1523-1755.2005.09712.x

    Article  Google Scholar 

  18. Ritz E, Nowicki M, Fliser D, Hörner D, Klimm HP (1994) Proteinuria and hypertension. Kidney Int Suppl 47:S76-80

    CAS  PubMed  Google Scholar 

  19. Schmidt MI, Duncan BB, Mill JG, Lotufo PA, Chor D, Barreto SM, Aquino EM, Passos VM, Matos SM, Molina Mdel C, Carvalho MS, Bensenor IM (2015) Cohort profile: Longitudinal Study of Adult Health (ELSA-Brasil). Int J Epidemiol 44(1):68–75. https://doi.org/10.1093/ije/dyu027

    Article  PubMed  Google Scholar 

  20. Aquino EM, Barreto SM, Bensenor IM, Carvalho MS, Chor D, Duncan BB, Lotufo PA, Mill JG, Molina Mdel C, Mota EL, Passos VM, Schmidt MI, Szklo M (2012) Brazilian Longitudinal Study of Adult Health (ELSA-Brasil): objectives and design. Am J Epidemiol 175(4):315–324. https://doi.org/10.1093/ije/dyu027

    Article  PubMed  Google Scholar 

  21. Almeida-Pititto B, Ribeiro-Filho FF, Lotufo PA, Bensenor IM, Ferreira SRG (2015) Novel biomarkers of cardiometabolic risk are associated with plasma glucose within non-diabetic range. The Brazilian Longitudinal Study of Adult Health – ELSA-Brasil. Diabetes Res Clin Pract 109(1):110–116. https://doi.org/10.1016/j.diabres.2015.04.021

    Article  CAS  PubMed  Google Scholar 

  22. Bensenor IM, Griep RH, Pinto KA, Faria CP, Felisbino-Mendes M, Caetano EI, Albuquerque Lda S, Schmidt MI (2013) Routines of organization of clinical test and interviews in the ELSA-Brasil investigation center. Rev Saude Publica 47(Suppl 2):37–47. https://doi.org/10.1590/s0034-8910.2013047003780

    Article  PubMed  Google Scholar 

  23. Fedeli LG, Vidigal PG, Leite CM, Castilhos CD, Pimentel RA, Maniero VC, Mill JG, Lotufo PA, Pereica AC, Bensenor IM (2013) Logistics of collection and transportation of biological samples and the organization of the central laboratory in the ELSA-Brasil. Rev Saude Publica 47(Suppl 2):63–71. https://doi.org/10.1590/s0034-8910.2013047003807

    Article  PubMed  Google Scholar 

  24. Pereira AC, Bensenor IM, Fedeli LM, Castilhos C, Vidigal PG, Maniero V, Leite CM, Pimentel RA, Duncan BB, Mill JG, Lotufo PA (2013) Design and implementation of the ELSA-Brasil biobank: a prospective study in a Brazilian population. Rev Saude Publica 47(Suppl 2):72–78. https://doi.org/10.1590/s0034-8910.2013047003822

    Article  PubMed  Google Scholar 

  25. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, Coresh J (2009) CKD-EPI (chronic kidney disease epidemiology collaboration). A new equation to estimate glomerular filtration rate. Ann Intern Med 150(9):604–612. https://doi.org/10.7326/0003-4819-150-9-200905050-00006. (Erratum in: Ann Intern Med 2011;155(6):408)

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kidney Disease Improving Global Outcomes - KDIGO 2012. Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease (2013) Official Journal of the International Society of Nephrology. Kidney Int Suppl 3(1):7–10

    Google Scholar 

  27. Galteau MM, Goyun M, Gueguen R, Siest G (2001) Determination of serum cystatin C: biological variation and reference values. Clin Chem Lab Med 39(9):850–857. https://doi.org/10.1515/CCLM.2001.141

    Article  CAS  PubMed  Google Scholar 

  28. American Diabetes Association (2015) Classification and diagnosis of diabetes. Diabetes Care 38(Suppl 1):S8–S16

    Article  Google Scholar 

  29. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28(7):412–419

    Article  CAS  PubMed  Google Scholar 

  30. Hernán MA, Robins JM (2006) Instruments for causal inference: an epidemiologist’s dream? Epidemiology 17(4):360–372. https://doi.org/10.1097/01.ede.0000222409.00878.37

    Article  PubMed  Google Scholar 

  31. Greenland S, Pearl J, Robins JM (1999) Causal diagrams for epidemiologic research. Epidemiology 10(1):37–48

    Article  CAS  PubMed  Google Scholar 

  32. Austin PC (2011) An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivar Behav Res 46(3):399–424. https://doi.org/10.1080/00273171.2011.568786

    Article  Google Scholar 

  33. Haukoos JS, Lewis RJ (2015) The propensity score. JAMA 314(15):1637–1638. https://doi.org/10.1001/jama.2015.13480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Romagnani P, Remuzzi G, Glassock R, Levin A, Jager KJ, Tonelli M, Massy Z, Wanner C, Anders HJ (2017) Chronic kidney disease. Nat Rev Dis Primers 3:17088. https://doi.org/10.1038/nrdp.2017.88

    Article  PubMed  Google Scholar 

  35. WHO (2017) Global Health Observatory (GHO) data. Raised blood pressure. World Health Organization, Geneva

    Google Scholar 

  36. Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD et al (2019) ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: a report of the College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 140(11):e596–e646. https://doi.org/10.1161/CIR.0000000000000678

    Article  PubMed  PubMed Central  Google Scholar 

  37. Barker DJ (1999) Fetal origins of cardiovascular disease. Ann Med 31(Suppl 1):3–6. https://doi.org/10.1080/07853890.1999.11904392

    Article  PubMed  Google Scholar 

  38. Sutherland MR, Gubhaju L, Moore L, Kent AL, Dahlstrom JE, Horne RSC, Hoy WE, Bertram JF, Black MJ (2011) Accelerated maturation and abnormal morphology in the preterm neonatal kidney. J Am Soc Nephrol 22(7):1365–1374. https://doi.org/10.1681/ASN.2010121266

    Article  PubMed  PubMed Central  Google Scholar 

  39. Juonala M, Cheung MMH, Sabin MA, Burgner D, Skilton MR et al (2015) Effect of birth weight on life-course blood pressure levels among children born premature: the Cardiovascular Risk in Young Finns Study. Hypertension 33:1542–1548. https://doi.org/10.1097/HJH.0000000000000612

    Article  CAS  Google Scholar 

  40. de Jong F, Monuteaux MC, Elburg RM, Gillman MW, Belfort MB (2012) Systematic review and meta-analysis of preterm birth and later systolic blood pressure. Hypertension 59(2):226–234. https://doi.org/10.1161/HYPERTENSIONAHA.111.181784

    Article  CAS  PubMed  Google Scholar 

  41. Lazdam M, de la Horra A, Pitcher A, Mannie Z, Diesch J, Trevitt C, Kylintireas I et al (2010) Elevated blood pressure in offspring born premature to hypertensive pregnancy: is endothelial dysfunction the underlying vascular mechanism? Hypertension 56:159–165. https://doi.org/10.1161/HYPERTENSIONAHA.110.150235

    Article  CAS  PubMed  Google Scholar 

  42. Leeson CP, Kattenhorn M, Morley R, Lucas A, Deanfield JE (2001) Impact of low birth weight and cardiovascular risk factors on endothelial function in early adult life. Circulation 103:1264–1268. https://doi.org/10.1161/01.cir.103.9.1264

    Article  CAS  PubMed  Google Scholar 

  43. Bourque SL, Gragasin FS, Quon AL, Mansour Y, Morton JS, Davidge ST (2013) Prenatal hypoxia causes long-term alterations in vascular endothelin-1 function in aged male, but not female, offspring. Hypertension 62(4):753–758. https://doi.org/10.1161/HYPERTENSIONAHA.113.01516

    Article  CAS  PubMed  Google Scholar 

  44. Skilton MR, Viikari JSA, Juonala M, Laitinen T, Lehtimäki T, Taittonen L, Kähönen M, Celermajer DS, Raitakari OT (2011) Fetal growth and preterm birth influence cardiovascular risk factors and arterial health in young adults: the Cardiovascular Risk in Young Finns Study. Arterioscler Thromb Vasc Biol 31(12):2975–2981. https://doi.org/10.1161/ATVBAHA.111.234757

    Article  CAS  PubMed  Google Scholar 

  45. Barker DJP (2007) The origins of the developmental origins theory. J Intern Med 261(5):412–417. https://doi.org/10.1111/j.1365-2796.2007.01809.x

    Article  CAS  PubMed  Google Scholar 

  46. Osathanondh V, Potter EL (1963) Development of human kidney as shown in by microdissection. III. Formation and interrelationship of collecting tubules and nephrons. Arch Pathol 76:290–302

    CAS  PubMed  Google Scholar 

  47. Bertagnolli M, Luu TM, Lewandowski AJ, Leeson P, Nuyt AM (2016) Preterm birth and hypertension: is there a link? Curr Hypertens Rep 18(4):28. https://doi.org/10.1007/s11906-016-0637-6

    Article  PubMed  Google Scholar 

  48. Giannì ML, Roggero P, Liotto N, Amato O, Piemontese P, Morniroli D, Bracco B, Masca F (2012) Postnatal catch-up fat after late preterm brith. Pedriatr Res 72(6):637–640. https://doi.org/10.1038/pr.2012.128

    Article  Google Scholar 

  49. Ou-Yang MC, Sun Y, Liebowitz M, Chen CC, Fan ML, Dai W, Chuang TW, Chen JL (2020) Accelerated weight gain, prematurity, and the risk of childhood obesity: a meta-analysis and systematic review. PLoS ONE 15(5):e0232238. https://doi.org/10.1371/journal.pone.0232238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Silverwood RJ, Pierce M, Hardy R, Sattar N, Whincup P, Ferro C, Savage C, Kuh D, Nitsch D (2013) Low birth weight, later renal function, and the roles of adulthood blood pressure, diabetes, and obesity in a British birth cohort. Kidney Int 84(6):1262–1270. https://doi.org/10.1038/ki.2013.223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. White SL, Perkovic V, Cass A, Chang CL, Poulter NR, Spector T, Haysom L, Craig JC, Salmi IA, Chadban SJ, Huxley RR (2009) Is low birth weight an antecedent of CKD in later life? A systematic review of observational studies. Am J Kidney Dis 54(2):248–261. https://doi.org/10.1053/j.ajkd.2008.12.042

    Article  PubMed  Google Scholar 

  52. Ritz E, Amann K, Koleganova N, Benz K (2011) Prenatal programming-effects on blood pressure and renal function. Nat Rev Nephrol 7(3):137–144. https://doi.org/10.1038/nrneph.2011.1

    Article  PubMed  Google Scholar 

  53. de Jong PE, Gansevoort RT (2009) Focus on microalbuminuria to improve cardiac and renal protection. Nephron Clin Pract 111:c204-211. https://doi.org/10.1159/000201568

    Article  CAS  PubMed  Google Scholar 

  54. Hughson M, Farris AB 3rd, Douglas-Denton R, Hoy WE, Bertram JF (2003) Glomerular number and size in autopsy kidneys: the relationship to birth weight. Kidney Int 63(6):2113–2122. https://doi.org/10.1046/j.1523-1755.2003.00018.x

    Article  PubMed  Google Scholar 

  55. Mañalich R, Reyes L, Herrera M, Melendi C, Fundora I (2000) Relationship between weight at birth and the number and size of renal glomeruli in humans: a histomorphometric study. Kidney Int 58(2):770–773. https://doi.org/10.1046/j.1523-1755.2000.00225.x

    Article  PubMed  Google Scholar 

  56. Zohdi V, Sutherland MR, Lim K, Gubhaju L, Zimanyi MA, Black MJ (2012) Low birth weight due to intrauterine growth restriction and/or preterm birth: effects on nephron number and long-term renal health. Int J Nephrol. https://doi.org/10.1155/2012/136942

    Article  PubMed  PubMed Central  Google Scholar 

  57. Rodríguez MM, Gómez AH, Abitbol CL, Chandar JJ, Duara S, Zilleruelo GE (2004) Histomorphometric analysis of postnatal glomerulogenesis in extremely preterm infants. Pediatr Dev Pathol 7(1):17–25. https://doi.org/10.1007/s10024-003-3029-2

    Article  PubMed  Google Scholar 

  58. Laterza OF, Price CP, Scott MG (2002) Cystatin C: an improved estimator of glomerular filtration rate? Clin Chem 48(5):699–707

    Article  CAS  PubMed  Google Scholar 

  59. Fassett RG, Venuthurupalli SK, Gobe GC, Coombes JS, Cooper MA, Hoy WE (2011) Biomarkers in chronic kidney disease: a review. Kidney Int 80(8):806–821. https://doi.org/10.1038/ki.2011.198

    Article  CAS  PubMed  Google Scholar 

  60. Qiu X, Liu C, Ye Y, Li H, Chen Y, Fu Y, Liu Z, Huang X, Zhang Y, Liao X, Liu H, Zhao W, Liu X (2017) The diagnostic value of serum creatinine and cystatin C in evaluating glomerular filtration rate in patients with chronic kidney disease: a systematic literature review and meta-analysis. Oncotarget 8(42):72985–72999. https://doi.org/10.18632/oncotarget.20271

    Article  PubMed  PubMed Central  Google Scholar 

  61. Chin HB, Baird DD, McConnaughey DR, Weinberg CR, Wilcox AJ, Jukic AM (2017) Long-term recall of pregnancy-related events. Epidemiology 28(4):575–579. https://doi.org/10.1097/EDE.0000000000000660

    Article  PubMed  PubMed Central  Google Scholar 

  62. Promislow JHE, Gladen BC, Sandler DP (2005) Maternal recall of breastfeeding duration by elderly women. Am J Epidemiol 161(3):289–296. https://doi.org/10.1093/aje/kwi044

    Article  PubMed  Google Scholar 

  63. Tomeo CA, Rich-Edwards JW, Michels KB, Berkey CS, Hunter DJ, Frazier AL, Willett WC, Buka SL (1999) Reproducibility and validity of maternal recall of pregnancy-related events. Epidemiology 10(6):774–777

    Article  CAS  PubMed  Google Scholar 

  64. Cirillo M (2010) Evaluation of glomerular filtration rate and of albuminuria/proteinuria. J Nephrol 23(2):125–132

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the participation of the 5,061 individuals recruited for this study, without them this study and those based on the ELSA-Brasil cohort would not have been possible.

Funding

The current study was supported by a grant from the São Paulo Research Foundation (Fundação de Amparo à Pesquisa do Estado de São Paulo—FAPESP—Protocol 2009/15041-9). Also it was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior—Brasil (CAPES)—(Finance Code 001). The baseline ELSA-Brasil study was supported by the Brazilian Ministry of Health (Science and Technology Department), the Brazilian Ministry of Science and Technology, and CNPq-National Research Council (# 01 06 0010.00 RS, 01 06 0212.00 BA, 01 06 0300.00 ES, 01 06 0278.00 MG, 01 06 0115.00 SP, 01 06 0071.00 RJ).

Financial interest

The authors have no financial interests to disclose.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

Study design, analysis, interpretation and preparation of the manuscript: JB, BA-P and SF. Acquisition of data and critical revision for the manuscript content: PL and IB. All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.

Corresponding author

Correspondence to Sandra Roberta G. Ferreira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical disclosures

The study was approved by the National Commission on Ethics Research (CONEP) and the local ethics committee, the Research Ethics Committee (CEP) under registration number 76 of the University of São Paulo (HU-USP). The patients/participants provided written informed consent to participate in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 321 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Branda, J.I.F., de Almeida-Pititto, B., Bensenor, I. et al. Associations of prematurity and low birth weight with blood pressure and kidney function in middle-aged participants of the Brazilian Longitudinal Study of Adult Health: ELSA-Brasil. J Nephrol 36, 1373–1382 (2023). https://doi.org/10.1007/s40620-022-01549-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-022-01549-w

Keywords

Navigation