Skip to main content

Advertisement

Log in

Soluble Klotho levels in adult renal transplant recipients are modulated by recombinant human erythropoietin

  • Original Article
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

Background

Data on serum soluble Klotho levels in chronic kidney disease are contradictory and even less is known after renal transplantation. Experimental studies demonstrated that recombinant human erythropoietin (rhEPO) treatment mitigates Klotho reduction caused by renal damage. Therefore, this study aimed to determine serum Klotho levels in a cohort of kidney transplant recipients (KTR) and to evaluate whether rhEPO treatment can modulate, in vivo and in vitro, soluble Klotho.

Methods

117 KTR and 22 healthy subjects (HS) were enrolled. In 17 KTR, rhEPO was discontinued for 5 weeks and Klotho levels were compared to 34 propensity score-matched controls. Moreover, we evaluated Klotho mRNA expression and protein secretion in HK-2 tubular cells treated with cyclosporin A (CyA) and rhEPO, alone or in combination.

Results

Serum Klotho levels in KTR were significantly higher than in HS (0.68 vs. 0.37, p = 0.002) and significantly associated with estimated glomerular filtration rate (r = −0.378, p = 0.003) and fibroblast growth factor 23 (r = −0.307, p < 0.0001). After 5 weeks of rhEPO discontinuation, treated KTR showed a sharper reduction of Klotho levels than controls (−0.56 vs. −0.11 ng/ml, p < 0.0001). In HK-2 cells CyA treatment induced a Klotho down-regulation that was mitigated by rhEPO pre-treatment. In the same experimental conditions, our results revealed that cells treated with CyA + rhEPO secreted higher soluble Klotho levels than those exposed to CyA or rhEPO alone.

Conclusions

Our results demonstrate that KTR have higher serum Klotho levels than HS and that rhEPO treatment modulates these concentrations, suggesting a link between rhEPO and soluble Klotho in KTR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kuro-o M, Matsumura Y, Aizawa H et al (1997) Mutation of the mouse Klotho gene leads to a syndrome resembling ageing. Nature 390:45–51

    Article  PubMed  CAS  Google Scholar 

  2. Wang Y, Sun Z (2009) Current understanding of Klotho. Ageing Res Rev 8:43–51

    Article  PubMed  PubMed Central  Google Scholar 

  3. Matsumura Y, Aizawa H, Shiraki-Iida T, Nagai R, Kuro-o M, Nabeshima Y (1998) Identification of the human Klotho gene and its two transcripts encoding membrane and secreted Klotho protein. Biochem Biophys Res Commun 242:626–630

    Article  PubMed  CAS  Google Scholar 

  4. Kuro-o M (2006) Klotho as a regulator of fibroblast growth factor signaling and phosphate/calcium metabolism. Curr Opin Nephrol Hypertens 15:437–441

    Article  PubMed  CAS  Google Scholar 

  5. Kurosu H, Ogawa Y, Miyoshi M et al (2006) Regulation of fibroblast growth factor-23 signaling by Klotho. J Biol Chem 281:6120–6123

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Urakawa I, Yamazaki Y, Shimada T et al (2006) Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444:770–774

    Article  PubMed  CAS  Google Scholar 

  7. Hu MC, Shiizaki K, Kuro-o M, Moe OW (2013) Fibroblast growth factor 23 and Klotho: physiology and pathophysiology of an endocrine network of mineral metabolism. Annu Rev Physiol 75:503–533

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Hsieh CC, Kuro-o M, Rosenblatt KP, Brobey R, Papaconstantinou J (2010) The ASK1-Signalosome regulates p38 MAPK activity in response to levels of endogenous oxidative stress in the Klotho mouse models of aging. Aging (Albany NY) 2:597–611

    CAS  Google Scholar 

  9. Kuro-o M (2009) Klotho and aging. Biochim Biophys Acta 1790:1049–1058

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Kuro-o M (2010) Klotho. Pflugers Arch 459:333–343

    Article  PubMed  CAS  Google Scholar 

  11. Yamamoto M, Clark JD, Pastor JV et al (2005) Regulation of oxidative stress by the anti-aging hormone Klotho. J Biol Chem 280:38029–38034

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Yamazaki Y, Imura A, Urakawa I et al (2010) Establishment of sandwich ELISA for soluble alpha-Klotho measurement: age-dependent change of soluble alpha-Klotho levels in healthy subjects. Biochem Biophys Res Commun 398:513–518

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Akimoto T, Shiizaki K, Sugase T et al (2012) The relationship between the soluble Klotho protein and the residual renal function among peritoneal dialysis patients. Clin Exp Nephrol 16:442–447

    Article  PubMed  CAS  Google Scholar 

  14. Pavik I, Jaeger P, Ebner L et al (2012) Soluble Klotho and autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol 7:248–257

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Sugiura H, Tsuchiya K, Nitta K (2011) Circulating levels of soluble alpha-Klotho in patients with chronic kidney disease. Clin Exp Nephrol 15:795–796

    Article  PubMed  Google Scholar 

  16. Hu MC, Shi M, Zhang J, Quinones H, Kuro-o M, Moe OW (2010) Klotho deficiency is an early biomarker of renal ischemia–reperfusion injury and its replacement is protective. Kidney Int 78:1240–1251

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Kitagawa M, Sugiyama H, Morinaga H et al (2013) A decreased level of serum soluble Klotho is an independent biomarker associated with arterial stiffness in patients with chronic kidney disease. PLoS One 8:e56695

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Sugiura H, Yoshida T, Mitobe M, Shiohira S, Nitta K, Tsuchiya K (2010) Recombinant human erythropoietin mitigates reductions in renal Klotho expression. Am J Nephrol 32:137–144

    Article  PubMed  CAS  Google Scholar 

  19. Yoon HE, Ghee JY, Piao S et al (2011) Angiotensin II blockade upregulates the expression of Klotho, the anti-ageing gene, in an experimental model of chronic cyclosporine nephropathy. Nephrol Dial Transplant 26:800–813

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Levey AS, Stevens LA, Schmid CH et al (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604–612

    Article  PubMed  PubMed Central  Google Scholar 

  21. De Amicis F, Giordano F, Vivacqua A et al (2011) Resveratrol, through NF-Y/p53/Sin3/HDAC1 complex phosphorylation, inhibits estrogen receptor alpha gene expression via p38MAPK/CK2 signaling in human breast cancer cells. FASEB J 25:3695–3707

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kuro O (2011) Phosphate and Klotho. Kidney Int 79:S20–S23

    Article  Google Scholar 

  23. Maltese G, Karalliedde J (2012) The putative role of the antiageing protein Klotho in cardiovascular and renal disease. Int J Hypertens 2012:757469

    Article  PubMed  PubMed Central  Google Scholar 

  24. Su KH, Yu YB, Hou HH et al (2012) AMP-activated protein kinase mediates erythropoietin-induced activation of endothelial nitric oxide synthase. J Cell Physiol 227:3053–3062

    Article  PubMed  CAS  Google Scholar 

  25. Foller M, Huber SM, Lang F (2008) Erythrocyte programmed cell death. IUBMB Life 60:661–668

    Article  PubMed  Google Scholar 

  26. Sugiura H, Yoshida T, Mitobe M et al (2010) Klotho reduces apoptosis in experimental ischaemic acute kidney injury via HSP-70. Nephrol Dial Transplant 25:60–68

    Article  PubMed  CAS  Google Scholar 

  27. Yang CW, Li C, Jung JY et al (2003) Preconditioning with erythropoietin protects against subsequent ischemia–reperfusion injury in rat kidney. FASEB J 17:1754–1755

    Article  PubMed  CAS  Google Scholar 

  28. Devaraj S, Syed B, Chien A, Jialal I (2012) Validation of an immunoassay for soluble Klotho protein: decreased levels in diabetes and increased levels in chronic kidney disease. Am J Clin Pathol 137:479–485

    Article  PubMed  CAS  Google Scholar 

  29. Yokoyama K, Imura A, Ohkido I et al (2012) Serum soluble alpha-Klotho in hemodialysis patients. Clin Nephrol 77:347–351

    Article  PubMed  CAS  Google Scholar 

  30. Pavik I, Jaeger P, Ebner L et al (2013) Secreted Klotho and FGF23 in chronic kidney disease stage 1 to 5: a sequence suggested from a cross-sectional study. Nephrol Dial Transplant 28:352–359

    Article  PubMed  CAS  Google Scholar 

  31. Seiler S, Wen M, Roth HJ et al (2013) Plasma Klotho is not related to kidney function and does not predict adverse outcome in patients with chronic kidney disease. Kidney Int 83:121–128

    Article  PubMed  CAS  Google Scholar 

  32. Akimoto T, Kimura T, Watanabe Y et al (2013) The impact of nephrectomy and renal transplantation on serum levels of soluble Klotho protein. Transplant Proc 45:134–136

    Article  PubMed  CAS  Google Scholar 

  33. Isakova T, Wolf M (2012) Partial answers from partial Klotho deficiency. J Am Soc Nephrol 23:1599–1601

    Article  PubMed  CAS  Google Scholar 

  34. Shimamura Y, Hamada K, Inoue K et al (2012) Serum levels of soluble secreted alpha-Klotho are decreased in the early stages of chronic kidney disease, making it a probable novel biomarker for early diagnosis. Clin Exp Nephrol 16:722–729

    Article  PubMed  CAS  Google Scholar 

  35. Hu MC, Shi M, Zhang J et al (2010) Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. FASEB J 24:3438–3450

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Dermaku-Sopjani M, Sopjani M, Saxena A et al (2011) Downregulation of NaPi-IIa and NaPi-IIb Na-coupled phosphate transporters by coexpression of Klotho. Cell Physiol Biochem 28:251–258

    Article  PubMed  CAS  Google Scholar 

  37. Imel EA, Peacock M, Pitukcheewanont P et al (2006) Sensitivity of fibroblast growth factor 23 measurements in tumor-induced osteomalacia. J Clin Endocrinol Metab 91:2055–2061

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by SIN (Italian Society of Nephrology), AMGEN

Conflict of interest

All the authors declared no competing interests. The manuscript has been seen and approved by all authors and it is not under consideration for publication elsewhere in a similar form, in any language

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renzo Bonofiglio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leone, F., Lofaro, D., Gigliotti, P. et al. Soluble Klotho levels in adult renal transplant recipients are modulated by recombinant human erythropoietin. J Nephrol 27, 577–585 (2014). https://doi.org/10.1007/s40620-014-0089-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-014-0089-5

Keywords

Navigation