Skip to main content
Log in

Cardiovascular evaluation and endothelial dysfunction in Cushing syndrome following remission: a prospective study

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Purpose

Cushing syndrome (CS) is a well-known risk factor for cardiovascular morbidities. We aimed to evaluate endothelial and cardiovascular functions, endothelial mediators and pro-inflammatory cytokines in patients with CS before and after remission.

Methods

Adult patients with newly diagnosed endogenous CS were included. Metabolic [body mass index (BMI), glucose, and lipid values] and cardiovascular evaluation studies [24-h ambulatory blood pressure monitoring, carotid intima-media thickness (CIMT), flow-mediated dilation (FMD), and echocardiography] were performed, and endothelial mediators [asymmetric dimethyl arginine (ADMA) and endothelin-1 (ET-1)] and pro-inflammatory cytokines [interleukin-1β (IL-1β) and tumor necrosis factor-alpha (TNF-α)] were measured. Control group was matched in terms of age, gender, and BMIs.

Results

Twenty-five patients, mean age 40.60 ± 14.04 years, completed the study. Compared to controls (n = 20) mean arterial pressure (MAP) and CIMT were higher (p < 0.005 and p = 0.012, respectively), and FMD (p < 0.001) and mitral E/A ratio (p = 0.007) lower in the patients during active disease. Baseline serum ADMA, ET-1, and IL-1β were similar between the groups, while TNF-α was lower in the patients (p = 0.030). All patients were in complete remission 1 year following surgery. BMI, LDL cholesterol, serum total cholesterol, fasting plasma glucose, MAPs, and CIMT significantly decreased (p < 0.005), while there was no improvement in FMD (p = 0.11) following remission. There was no significant change in ADMA, IL-1β, and TNF-α levels, but ET-1 increased (p = 0.011).

Conclusions

Remission in CS improves some cardiovascular parameters. ADMA and ET-1 are not reliable markers for endothelial dysfunction in CS. Metabolic improvements may not directly reflect on serum concentrations of TNF-α and IL-1β following remission of CS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Etxabe J, Vazquez JA (1994) Morbidity and mortality in Cushing’s disease: an epidemiological approach. Clin Endocrinol (Oxf) 40(4):479–484. https://doi.org/10.1111/j.1365-2265.1994.tb02486.x

    Article  CAS  PubMed  Google Scholar 

  2. Deanfield JE, Halcox JP, Rabelink TJ (2007) Endothelial function and dysfunction: testing and clinical relevance. Circulation 115(10):1285–1295. https://doi.org/10.1161/CIRCULATIONAHA.106.652859

    Article  PubMed  Google Scholar 

  3. Corretti MC, Anderson TJ, Benjamin EJ, Celermajer D, Charbonneau F, Creager MA et al (2002) Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery: a report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol 39(2):257–265. https://doi.org/10.1016/s0735-1097(01)01746-6

    Article  PubMed  Google Scholar 

  4. de Groot E, van Leuven SI, Duivenvoorden R, Meuwese MC, Akdim F, Bots ML et al (2008) Measurement of carotid intima-media thickness to assess progression and regression of atherosclerosis. Nat Clin Pract Cardiovasc Med 5(5):280–288. https://doi.org/10.1038/ncpcardio1163

    Article  PubMed  Google Scholar 

  5. Ras RT, Streppel MT, Draijer R, Zock PL (2013) Flow-mediated dilation and cardiovascular risk prediction: a systematic review with meta-analysis. Int J Cardiol 168(1):344–351. https://doi.org/10.1016/j.ijcard.2012.09.047

    Article  PubMed  Google Scholar 

  6. Akaza I, Yoshimoto T, Tsuchiya K, Hirata Y (2010) Endothelial dysfunction aassociated with hypercortisolism is reversible in Cushing’s syndrome. Endocr J 57(3):245–252. https://doi.org/10.1507/endocrj.k09e-260

    Article  PubMed  Google Scholar 

  7. Lupoli R, Ambrosino P, Tortora A, Barba L, Lupoli GA, Di Minno MN (2017) Markers of atherosclerosis in patients with Cushing’s syndrome: a meta-analysis of literature studies. Ann Med 49(3):206–216. https://doi.org/10.1080/07853890.2016.1252055

    Article  PubMed  Google Scholar 

  8. Muiesan ML, Lupia M, Salvetti M, Grigoletto C, Sonino N, Boscaro M et al (2003) Left ventricular structural and functional characteristics in Cushing’s syndrome. J Am Coll Cardiol 41(12):2275–2279. https://doi.org/10.1016/s0735-1097(03)00493-5

    Article  PubMed  Google Scholar 

  9. Colao A, Pivonello R, Spiezia S, Faggiano A, Ferone D, Filippella M et al (1999) Persistence of increased cardiovascular risk in patients with Cushing’s disease after five years of successful cure. J Clin Endocrinol Metab 84(8):2664–2672. https://doi.org/10.1210/jcem.84.8.5896

    Article  CAS  PubMed  Google Scholar 

  10. Toja PM, Branzi G, Ciambellotti F, Radaelli P, De Martin M, Lonati LM et al (2012) Clinical relevance of cardiac structure and function abnormalities in patients with Cushing’s syndrome before and after cure. Clin Endocrinol (Oxf) 76(3):332–338. https://doi.org/10.1111/j.1365-2265.2011.04206.x

    Article  CAS  PubMed  Google Scholar 

  11. Isidori AM, Graziadio C, Paragliola RM, Cozzolino A, Ambrogio AG, Colao A et al (2015) The hypertension of Cushing’s syndrome: controversies in the pathophysiology and focus on cardiovascular complications. J Hypertens 33(1):44–60. https://doi.org/10.1097/HJH.0000000000000415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kirilov G, Tomova A, Dakovska L, Kumanov P, Shinkov A, Alexandrov AS (2003) Elevated plasma endothelin as an additional cardiovascular risk factor in patients with Cushing’s syndrome. Eur J Endocrinol 149(6):549–553. https://doi.org/10.1530/eje.0.1490549

    Article  CAS  PubMed  Google Scholar 

  13. Ozsurekci CG, Akturk M, Ozkan C, Gulbahar O, Altinova AE, Yalcin M et al (2016) Asymmetric dimethylarginine levels and atherosclerosis markers in cushing syndrome. Endocr Pract 22(9):1088–1095. https://doi.org/10.4158/EP15990.OR

    Article  PubMed  Google Scholar 

  14. Shah N, Ruiz HH, Zafar U, Post KD, Buettner C, Geer EB (2017) Proinflammatory cytokines remain elevated despite long-term remission in Cushing’s disease: a prospective study. Clin Endocrinol (Oxf) 86(1):68–74. https://doi.org/10.1111/cen.13230

    Article  CAS  PubMed  Google Scholar 

  15. Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM (1995) Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest 95(5):2409–2415. https://doi.org/10.1172/JCI117936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Simon AD, Yazdani S, Wang W, Schwartz A, Rabbani LE (2000) Circulating levels of IL-1beta, a prothrombotic cytokine, are elevated in unstable angina versus stable angina. J Thromb Thrombolysis 9(3):217–222. https://doi.org/10.1023/a:1018758409934

    Article  CAS  PubMed  Google Scholar 

  17. Shivaprasad K, Kumar M, Dutta D, Sinha B, Mondal SA, Maisnam I et al (2015) Increased soluble TNF receptor-1 and glutathione peroxidase may predict carotid intima media thickness in females with cushing syndrome. Endocr Pract 21(3):286–295. https://doi.org/10.4158/EP14399.OR

    Article  PubMed  Google Scholar 

  18. Setola E, Losa M, Lanzi R, Lucotti P, Monti LD, Castrignano T et al (2007) Increased insulin-stimulated endothelin-1 release is a distinct vascular phenotype distinguishing Cushing’s disease from metabolic syndrome. Clin Endocrinol (Oxf) 66(4):586–592. https://doi.org/10.1111/j.1365-2265.2007.02774.x

    Article  CAS  PubMed  Google Scholar 

  19. Doherty GM, Jensen JC, Buresh CM, Norton JA (1992) Hormonal regulation of inflammatory cell cytokine transcript and bioactivity production in response to endotoxin. Cytokine 4(1):55–62. https://doi.org/10.1016/1043-4666(92)90037-r

    Article  CAS  PubMed  Google Scholar 

  20. Papanicolaou DA, Tsigos C, Oldfield EH, Chrousos GP (1996) Acute glucocorticoid deficiency is associated with plasma elevations of interleukin-6: does the latter participate in the symptomatology of the steroid withdrawal syndrome and adrenal insufficiency? J Clin Endocrinol Metab 81(6):2303–2306. https://doi.org/10.1210/jcem.81.6.8964868

    Article  CAS  PubMed  Google Scholar 

  21. Nieman LK, Biller BM, Findling JW, Newell-Price J, Savage MO, Stewart PM et al (2008) The diagnosis of cushing’s syndrome: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 93(5):1526–1540. https://doi.org/10.1210/jc.2008-0125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mitchell C, Rahko PS, Blauwet LA, Canaday B, Finstuen JA, Foster MC et al (2019) Guidelines for performing a comprehensive transthoracic echocardiographic examination in adults: recommendations from the American society of echocardiography. J Am Soc Echocardiogr 32(1):1–64. https://doi.org/10.1016/j.echo.2018.06.004

    Article  PubMed  Google Scholar 

  23. Muntner P, Shimbo D, Carey RM, Charleston JB, Gaillard T, Misra S et al (2019) Measurement of blood pressure in humans: a scientific statement from the american heart association. Hypertension 73(5):e35–e66. https://doi.org/10.1161/HYP.0000000000000087

    Article  CAS  PubMed  Google Scholar 

  24. Faggiano A, Pivonello R, Spiezia S, De Martino MC, Filippella M, Di Somma C et al (2003) Cardiovascular risk factors and common carotid artery caliber and stiffness in patients with Cushing’s disease during active disease and 1 year after disease remission. J Clin Endocrinol Metab 88(6):2527–2533. https://doi.org/10.1210/jc.2002-021558

    Article  CAS  PubMed  Google Scholar 

  25. Schernthaner-Reiter MH, Siess C, Gessl A, Scheuba C, Wolfsberger S, Riss P et al (2019) Factors predicting long-term comorbidities in patients with Cushing’s syndrome in remission. Endocrine 64(1):157–168. https://doi.org/10.1007/s12020-018-1819-6

    Article  CAS  PubMed  Google Scholar 

  26. Fallo F, Budano S, Sonino N, Muiesan ML, Agabiti-Rosei E, Boscaro M (1994) Left ventricular structural characteristics in Cushing’s syndrome. J Hum Hypertens 8(7):509–513 (Epub 1994/07/01 PubMed PMID: 7932514)

    CAS  PubMed  Google Scholar 

  27. Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T et al (2016) Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the american society of echocardiography and the european association of cardiovascular imaging. J Am Soc Echocardiogr 29(4):277–314. https://doi.org/10.1016/j.echo.2016.01.011

    Article  PubMed  Google Scholar 

  28. Cziraki A, Lenkey Z, Sulyok E, Szokodi I, Koller A (2020) L-Arginine-nitric oxide-asymmetric dimethylarginine pathway and the coronary circulation: translation of basic science results to clinical practice. Front Pharmacol 11:569914. https://doi.org/10.3389/fphar.2020.569914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tsikas D, Bollenbach A, Hanff E, Kayacelebi AA (2018) Asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA) and homoarginine (hArg): the ADMA, SDMA and hArg paradoxes. Cardiovasc Diabetol 17(1):1. https://doi.org/10.1186/s12933-017-0656-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bai Y, Sun L, Du L, Zhang T, Xin W, Lan X et al (2013) Association of circulating levels of asymmetric dimethylarginine (ADMA) with carotid intima-media thickness: evidence from 6168 participants. Ageing Res Rev 12(2):699–707. https://doi.org/10.1016/j.arr.2012.02.003

    Article  CAS  PubMed  Google Scholar 

  31. Fiodorenko-Dumas Z, Dumas I, Rabczynski M, Malecki R, Adamiec R, Paprocka-Borowicz M (2021) Lack of evidence of the correlation between plasma Asymmetrical Dimethylarginine correlation and IMT in type 2 diabetic patients with chronic vascular complication. Acta Biochim Pol 68(1):143–149. https://doi.org/10.18388/abp.2020_5424

    Article  CAS  PubMed  Google Scholar 

  32. Haynes WG, Webb DJ (1998) Endothelin as a regulator of cardiovascular function in health and disease. J Hypertens 16(8):1081–1098. https://doi.org/10.1097/00004872-199816080-00001

    Article  CAS  PubMed  Google Scholar 

  33. Goddard J, Webb DJ (2000) Plasma endothelin concentrations in hypertension. J Cardiovasc Pharmacol 35(4 Suppl 2):S25-31. https://doi.org/10.1097/00005344-200000002-00007

    Article  CAS  PubMed  Google Scholar 

  34. Davenport AP, Ashby MJ, Easton P, Ella S, Bedford J, Dickerson C et al (1990) A sensitive radioimmunoassay measuring endothelin-like immunoreactivity in human plasma: comparison of levels in patients with essential hypertension and normotensive control subjects. Clin Sci (Lond) 78(3):261–264. https://doi.org/10.1042/cs0780261

    Article  CAS  PubMed  Google Scholar 

  35. Ueland T, Kristo C, Godang K, Aukrust P, Bollerslev J (2003) Interleukin-1 receptor antagonist is associated with fat distribution in endogenous Cushing’s syndrome: a longitudinal study. J Clin Endocrinol Metab 88(4):1492–1496. https://doi.org/10.1210/jc.2002-021030

    Article  CAS  PubMed  Google Scholar 

  36. Cruz-Topete D, Cidlowski JA (2015) One hormone, two actions: anti- and pro-inflammatory effects of glucocorticoids. NeuroImmunoModulation 22(1–2):20–32. https://doi.org/10.1159/000362724

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific Research Unit of Erciyes University under Project No. TTU-2013-4566.

Funding

This work was funded by the Scientific Research Unit of Erciyes University under Project No. TTU-2013-4566.

Author information

Authors and Affiliations

Authors

Contributions

FK, ZK, KU, ST, and AH: contributed to conception and design of the study; AH, STF, ASC, ST, AS, NK, and FT: contributed to acquisition of data; ST: contributed to acquisition and analysis of laboratory test results; STF and AH: organized the database; AH: performed the statistics and wrote the first draft of the manuscript; AH, ZK, and NK: contributed to interpretation of data. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Z. Karaca.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Ethical approval

Approval was obtained from the ethics committee of Erciyes University Medical School (2013/155). The procedures used in this study adhere to the tenets of the Declaration of Helsinki.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hacioglu, A., Firat, S.T., Caglar, A.S. et al. Cardiovascular evaluation and endothelial dysfunction in Cushing syndrome following remission: a prospective study. J Endocrinol Invest 47, 645–653 (2024). https://doi.org/10.1007/s40618-023-02183-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-023-02183-4

Keywords

Navigation