Skip to main content

Advertisement

Log in

Immunohistochemistry, histopathology, and biomarker studies of swertiamarin, a secoiridoid glycoside, prevents and protects streptozotocin-induced β-cell damage in Wistar rat pancreas

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Background

Diabetes mellitus is globally the major cause for metabolic syndrome in STZ-induced diabetic rats, leading to mortality. Treatment of diabetes by oral hypoglycemic agents causes adverse side effects and thus treatment with natural herbal drugs like swertiamarin is promising. Swertiamarin, an active compound isolated from Enicostemma littorale possesses antidiabetic activity and enhances β cell regeneration which causes reversal of diabetes.

Objectives

The present study aims at the following: (1) to evaluate antidiabetic, anti-hyperlipidaemic, activity of swertiamarin in Streptozotocin- induced diabetic rats using biomarkers. (2) To assess histopathological alterations in Pancreas, Liver, Kidney, and Heart of swertiamarin-treated STZ-induced diabetic rats and confirm cytoprotective activity of swertiamarin by Immunohistochemistry and morphometric investigations.

Methods

Diabetes was induced intraperitoneally in male Wistar rats by Streptozotocin (STZ 50 mg/kg). After STZ-induction, hyperglycemic rats were treated with doses of swertiamarin orally (15, 25, 50 mg/kg) each for 28 days. Glibenclamide (2.5 mg/kg), a sulphonyl urea, was used as a standard drug. The glycemic control was measured by the biochemical parameter assays. Histopathology analysis of organs and immunohistochemistry of islets were carried out.

Results

Our study results showed that oral administration of swertiamarin at a dosage of 15, 25, 50 mg/kg bw for 28 days resulted in a significant (p < 0.01) decrease in fasting blood glucose, HbA1c, TC, TG, LDL, and increased the levels of hemoglobin, plasma insulin, TP, body weight, and HDL levels significantly (p < 0.01) when compared to STZ-induced diabetic rats, as confirmed by immunohistochemical studies. The effect of swertiamarin on Carbohydrate-metabolizing enzymes was investigated and found to have normal therapeutic activity. Histopathological studies of Pancreas of swertiamarin-treated diabetic rats showed regeneration of islets when compared to STZ-induced diabetic rats, as confirmed by immunohistochemical studies.

Conclusion

Our research results clearly substantiate that swertiamarin possesses antihyperglycemic, antihyperlipidemic, cytoprotective, and immune reactivity and also a broad spectrum potential of treating diabetes and other complications related to diabetes and hence can be developed into a potent oral antidiabetic drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. American Diabetes Association (2007) Diagnosis and classification of diabetes mellitus. Diabetes Care 30:S42–S47

    Article  Google Scholar 

  2. Shalam MD, Harish MS, Farhana SA (2006) Prevention of dexamethasone- and fructose-induced insulin resistance in rats by SH-01D, a herbal preparation. Indian J Pharmacol 38:419–422

    Article  Google Scholar 

  3. World Health Organization (1999) Definition, diagnosis and classification of diabetes mellitus and its complications. In: Report of WHO Consultation. Part 1: diagnosis and classification of diabetes mellitus. World Health Organization, Geneva

  4. Singh Randhir, Kaur Navpreet, Kishore Lalit, Gupta Girish Kumar (2013) Management of diabetic complications: A chemical constituents based approach. J Ethnopharmacol 150:51–70

    Article  CAS  PubMed  Google Scholar 

  5. Teugwa CM, Boudjeko T, Tchinda BT, Mejiato PC, Zofou D (2013) Anti-hyperglycemic globulins from selected Cucurbitaceae seeds used as antidiabetic medicinal plants in Africa. BMC Complement Altern Med 13:63

    Article  PubMed Central  PubMed  Google Scholar 

  6. Abdel Aziz MT, El-Asmar MF, Rezq AM, Mahfouz SM, Wassef MA, Fouad HH, Ahmed HH, Taha FM (2013) The effect of a novel curcumin derivative on pancreatic islet regeneration in experimental type-1 diabetes in rats (long term study). Diabetol Metab Syndr 5:75

    Article  PubMed Central  PubMed  Google Scholar 

  7. Hamby RI (1970) Primary myocardial disease—a prospective clinical and hemodynamic evaluation of 100 patients. Medicine 49:55–78

    Article  CAS  PubMed  Google Scholar 

  8. Rahman IK, Das AK, Gogoi GN (2000) Diabetic autonomic neuropathy and its clinical profile in NIDDM (type 2). Asian J Diabetol 2:19–23

    Google Scholar 

  9. Kumar R, Arora V, Ram V, Bhandari A, Vyas P (2011) Hypoglycemic and hypolipidemic effect of Allopolyherbal formulations in streptozotocin induced diabetes mellitus in rats. Int J Diabetes Mellit

  10. Mannucci E, Monami M, Dicembrini I, Piselli A, Porta M (2014) Achieving HbA1c targets in clinical trials and in the real world: a systematic review and meta-analysis. J Endocrinol Investig 37:477–495

    Article  Google Scholar 

  11. Kutan Fenercioglu A, Saler T, Genc E, Sabuncu H, Altuntas Y (2010) The effect of polyphenol-containing antioxidants on oxidative stress and lipid Peroxidation in Type 2 diabetes mellitus without complications. J Endocrinol Invest 3:118–124

    Article  Google Scholar 

  12. Kirtikar KR, Basu BD (1935) Indian medicinal plants, vol. 3, 2nd. Bishen Singh Mahendra Pal Singh, Dehra Dun, pp 1655–1656

  13. Natarajan PN, Prasad S (1972) Chemical investigation of Enicotemma littorale. Planta Med 22:42–46

    Article  CAS  PubMed  Google Scholar 

  14. Retnam KR, DeBritto AJ (1988) Preliminary phytochemical screening of three medicinal plants of Tirunelveli hills. J Econ Tax Bot 22:677–681

    Google Scholar 

  15. Rai J, Thakar KA (1966) Chemical investigation of Enicotemma littorale Blume. Curr Sci 35:148–149

    CAS  Google Scholar 

  16. Desai PD, Ganguly AK, Govindachari TR, Joshi BS, Kamat VN, Manmade AH, Mohamed PA, Nagle SK, Nayak RH, Saksena AK, Sathe SS, Vishwanathan N (1966) Chemical investigation of some Indian Medicinal Plants: part II Indian. J Chem 4:457–459

    CAS  Google Scholar 

  17. Vishwakarma SL, Rajani M, Milind S Bagul, Goyal RK (2004) A rapid method for the isolation of swertiamarin from Enicostemma littorale. Pharm Biol 42:400–403

    Article  CAS  Google Scholar 

  18. Ghosal S, Singh AK, Sharma PV, Chaudhuri RK (1974) Chemical constituents of Gentianacceae IX: natural occurrence of erythrocentaurin in Enicostemma hyssopifolium and Swertialawii. J Pharm Sci 63:944–945

    Article  CAS  PubMed  Google Scholar 

  19. Chaudhuri RK, Singh AK, Ghosal S (1974) Chemical constituents of Gentianaceae. XVIII. Structure of enicoflavine. Monoterpene alkaloids from Enicostemma hyssopifolium. Chem Ind (London) 3:127–128

    Google Scholar 

  20. Vijayvargia R, Kumar M, Gupta S (2000) Hypoglycemic effect of aqueous extract of Enicostemma littorale Blume. (chhotachirayata) on alloxan induced diabetes mellitus in rats. Indian J Exp Biol 38:781–784

    CAS  PubMed  Google Scholar 

  21. Maroo J, Vasu VT, Aalinkeel R, Gupta S (2002) Glucose lowering effect of aqueous extract of Enicostemma littorale Blume in diabetes: a possible mechanism of action.J. Ethnopharmacol 81:317–320

    Article  Google Scholar 

  22. Maroo J, Ghosh A, Mathur R, Vasu VT, Gupta S (2003) Anti-diabetic efficacy of Enicostemma littorale methanol extract in alloxan induced diabetic rats. Pharm Biol 41:388–391

    Article  Google Scholar 

  23. Maroo J, Vasu VT, Gupta S (2003) Dose dependent hypoglycemic effect of Enicostemma littorale Blume in alloxan induced diabetic rats. Phytomed 10:196–199

    Article  CAS  Google Scholar 

  24. Vasu VT, Ashwinikumar C, Maroo J, Gupta S, Gupta S (2003) Antidiabetic effect of Enicostemman littorale Blume aqueous extract in newly diagnosed non-insulin dependent diabetes mellitus patients (NIDDM): a preliminary investigation OPEM 3:84–89

  25. Vasu VT, Modi H, Thaikoottathil JV (2005) Hypolipidemic and antioxidant effect of Enicostemma littorale Blume aqueous extract in cholesterol fed rats. J Ethnopharmacol 101:277–282

    Article  PubMed  Google Scholar 

  26. Sonawane RD, Vishwakarma SL, Lakshmi S, Rajani M, Padh H, Goyal RK (2010) Amelioration of STZ-induced type 1 diabetic nephropathy by aqueous extract of Enicostemma littorale Blume and swertiamarin in rats. Mol Cell Biochem 340:1–6

    Article  CAS  PubMed  Google Scholar 

  27. Vaidya Hitesh, Rajani Mandapati, Sudarsanam Vasudevan, Padh Harish, Goyal Ramesh (2009) Antihyperlipidaemic activity of swertiamarin, a secoiridoid glycoside in poloxamer-407-induced hyperlipidaemic rats. J Nat Med 63:437–442

    Article  CAS  PubMed  Google Scholar 

  28. Vishwakarma SL, Goyal RK (2004) Hepatoprotective activity of Enicostemma littorale in CCl4-induced liver damage. J Nat Rem 4:120–126

    Google Scholar 

  29. Vishwakarma SL, Rajani M, Bagul Milind S, Goyal RK (2004) A rapid method for isolation of swertiamarin from Enicostemma littorale. Pharm Biol 42:400–403

    Article  CAS  Google Scholar 

  30. Barik R, Jain S, Qwatra D, Joshi A, Tripathi GS, Goyal R (2008) Antidiabetic activity of aqueous root extract of Ichnocarpus frutescens in streptozotocin–nicotinamide induced type-II diabetes in rats. Indian J Pharmacol 40(1):19–22

    Article  PubMed Central  PubMed  Google Scholar 

  31. Nasrallah R, Landry A, Singh S, Sklepowicz M, Hebert RL (2003) Increased expression of cyclooxygenase-1 and -2 in the diabetic rat renal medulla. Am J Physiol Renal Physiol 285:F1068–F1077

    Article  CAS  PubMed  Google Scholar 

  32. Drabkin DL, Austin JM (1932) Spectrophotometric constants for common hemoglobin derivatives in human, dog and rabbit blood. J Biol Chem 98:719–733

    CAS  Google Scholar 

  33. Lowry OH, Rosenbrough NJ, Farr AL (1951) Protein measurement with Folinphenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  34. Reitman S, Frankel SA (1957) Colorimetric method for the determination of serum glutamic oxaloacetic and glutamic pyruvic transaminases. Am J Clin Pathol 28:56–63

    CAS  PubMed  Google Scholar 

  35. Cabaud PC (1958) Wroblewski F. Calorimetric measurement of lactate dehydrogenase activity of body fluids.J. Clin Pathol 30:234–236

    CAS  Google Scholar 

  36. Principato GB, Asia MC, Talesa V, Rosin G, Giovannini E (1985) Characterization of the soluble alkaline phosphatase from hepatopancreas of Squilla mantis L. Comp Biochem Physiol 80B:801–804

    CAS  Google Scholar 

  37. Brandstrup N, Kirk JE, Bruni C (1957) Determination of hexokinase in tissues. J. Gerontol 12:166–171

    Article  CAS  PubMed  Google Scholar 

  38. Koide H, Oda T (1959) Pathological occurrence of glucose-6-phosphatase in serum in liver diseases. Clin Chim Acta 4:554–561

    Article  CAS  PubMed  Google Scholar 

  39. Gancedo JM, Gancedo C (1971) Fructose-1,6-diphosphatase, phosphofructokinase and glucose-6-phosphate dehydrogenase from fermenting and non fermenting yeasts. Arch Microbiol 76:132–138

    CAS  Google Scholar 

  40. Van-Handle E (1965) Estimation of glycogen in small amounts of tissue. Anal Biochem 11:256–262

    Article  Google Scholar 

  41. Cooke DW, Plotnick L (2008) Type 1 diabetes mellitus in pediatrics. Pediatr Rev 29:374–384

    Article  PubMed  Google Scholar 

  42. Grover JK, Rathi SS, Vats V (2000) Preliminary study of Fresh juice of Benincasahispidaon morphine addiction in mice. Fitoterapia 71(6):707–709

    Article  CAS  PubMed  Google Scholar 

  43. Patel TP, Soni S, Parikh P, Gosai J, Chruvattil R, Gupt S (2013) Swertiamarin: an active lead from Enicostemma littorale regulates hepatic and adipose tissue gene expression by targeting PPAR- and improves insulin sensitivity in experimental NIDDM rat model. Evidence-based complementary and alternative medicine. pp 11

  44. Yin H, Miao J, Zhang Y (2010) Protective effect of β-casomorphin-7 on type 1 diabetes rats induced with streptozotocin. Peptides 31:1725–1729

    Article  CAS  PubMed  Google Scholar 

  45. Ahmed D, Kumar V, Verma A, Gupta PS, Kumar H, Dhingra V, Mishra V, Sharma M (2014) Antidiabetic, renal/hepatic/pancreas/cardiac protective and antioxidant potential of methanol/dichloromethane extract of Albizzia Lebbeck Benth. stem bark (ALEx) on Streptozotocin induced diabetic rats. BMC Complement Altern Med 14:243

    Article  PubMed Central  PubMed  Google Scholar 

  46. Wua C, Li Y, Chena Y, Laoa X, Shenga L, Daia R, Menga W, Denga Y (2011) Hypoglycemic effect of Belamcandachinensis leaf extract in normal and STZ-induced 617 diabetic rats and its potential active faction. Phytomedicine 18:292–297

    Article  Google Scholar 

  47. Marles RJ, Farnsworth NR (1995) Antidiabetic plants and their active constituents. Phytomedicine 2(2):137–189

    Article  CAS  PubMed  Google Scholar 

  48. Ceriello A (2005) Postprandial hyperglycemia and diabetes complications: is it time to treat? Diabetes 54:1–7

    Article  CAS  PubMed  Google Scholar 

  49. Gray AM, Abdel-Wahab YHA, Flatt PR (2000) The traditional plant treatment, Sabucusnigra (Elder), exhibits insulin-like and insulin releasing actions in vitro. J Nutr:15–20

  50. Tian YM, Johnson G, Ashcroft JH (1998) Sulfonylureas enhance exocytosis from pancreatic β-cells by a mechanism that does not involve direct activation of protein kinase C. Diabetes 47:1722–1726

    Article  CAS  PubMed  Google Scholar 

  51. Pernet A, Trimble ER, Kuntschen F, Assal JP, Hahn C, Renold AE (1985) Sulfonylureas in insulin-dependent (type I) diabetes: evidence for an extrapancreatic effect in vivo. J Clin Endocrinol Metab 61(2):247–251

    Article  CAS  PubMed  Google Scholar 

  52. Collier JJ, Scott DK (2000) 4) “Sweet changes: glucose homeostasis can be altered by manipulating genes controlling hepatic glucose metabolism”. Mol Endocrinol 18:1051–1063

    Article  Google Scholar 

  53. Chatterja MN, Shinde R (2002) Text book of medical biochemistry, 5th edn. Medical Publishers, New Delhi 54

    Google Scholar 

  54. Kondeti VK, Badri KR, Maddirala DR, Thur SKM, Fatima SS, Kasetti RB (2010) Effect of Pterocarpus santalinus bark, on blood glucose, serum lipids, plasma insulin and hepatic carbohydrate metabolic enzymes in streptozotocin insulin and hepatic carbohydrate metabolic enzymes in streptozotocin induced diabetic rats. Food Chem Toxicol 48:1281–1285

    Article  CAS  PubMed  Google Scholar 

  55. Allen DW (1964) Hemoglobin within the Red Cell. Academic Press, NewYork/London

    Google Scholar 

  56. Latha RCR, Daisy P (2011) Insulin secretagogue, antihyperlipidemic and other protective effects of gallic acid isolated from Terminaliabellerica Roxb. in streptozotocin induced diabetic rats. Chem Biol Interact 189:112–118

    Article  CAS  PubMed  Google Scholar 

  57. Gandhi GR, Ignacimuthu S, Paulraj MG, Sasikumar P (2011) Antihyperglycemic activity and antidiabetic effect of methyl caffeate isolated from Solanumtorvum Swartz. fruit in streptozotocin induced diabetic rats. Eur J Pharmacol 670:623–631

    Article  CAS  PubMed  Google Scholar 

  58. Eliza J, Daisy P, Ignacimuthu S, Duraipandiyan V (2009) Normo-glycemic and hypolipidemic effect of costunolide isolated from Costus speciosus (Koen ex. Retz.)Sm. in streptozotocin-induced diabetic rats. Chem Biol Interact 179:329–334

    Article  CAS  PubMed  Google Scholar 

  59. Vestergard H (1999) Studies of gene expression and activity of hexokinase, phosphofructokinase and glycogen synthase in human skeletal muscle in states of altered insulin-stimulated glucose metabolism. Dan Med Bull 46:13–34

    Google Scholar 

  60. Ishikawa Y, Saito MN, Ikemoto T, Takeno H, Watanabe K, Tani T (1998) Actions of the novel oral antidiabetic agent HQL-975 in insulin-resistant non-insulin dependent diabetes mellitus model animals. Diabetes Res Clin Pract 41:101–111

    Article  CAS  PubMed  Google Scholar 

  61. Ferrer JC, Favre C, Gomis RR, Fernández-Novell JM, Garcia-Rocha M, De LaIglesia N (2003) Control of glycogen deposition. FEBS Lett 546:127–132

    Article  CAS  PubMed  Google Scholar 

  62. Ohaeri OC (2001) Effect of garlic oil on the levels of various enzyme in the serum and tissue of streptozotocin diabetic rats. Biosci Rep 21:19–24

    Article  CAS  PubMed  Google Scholar 

  63. El-Demerdash FM, Yousef MI, Abou El-Naga NI (2005) Biochemical study on the hypoglycemic effects of onion andgarlic in alloxan-induced diabetic rats. Food Chem Toxicol 43:57–63

    Article  CAS  PubMed  Google Scholar 

  64. Hassan HA, Yousef MI (2009) Mitigating effects of antioxidant properties of black berry juice on sodium fluoride induced-hepatotoxicity and oxidative stress in rats. Food Chem Toxicol 47(9):2332–2337

    Article  CAS  PubMed  Google Scholar 

  65. Sonawane RD, Vishwakarma SL, Lakshmi S, Rajani M, Padh H, Goyal RK (2010) Amelioration of STZ-induced type 1 diabetic nephropathy by aqueous extract of Enicostemma littorale Blume and swertiamarin in rats. Mol Cell Biochem 340:1–6

  66. Shirwaikar A, Rajendran K, Barik R (2006) Effect of aqueous bark extract of Garugapinnata Roxb. In streptozotocin-nicotinamide induced type-II diabetes mellitus. J Ethnopharmacol 107:285–290

    Article  PubMed  Google Scholar 

  67. Ahmed F, Urooj A (2008) Antihyperglycemic activity of Ficusglomerata stem bark instreptozotocin-induced diabetic rats. Global J Pharmacol 2:41–45

    Google Scholar 

  68. Kumar S, Kumar V, Prakash O (2011) Antidiabetic, hypolipidemic and histopathological analysis of Dillenia indica (L.) leaves extract on alloxan induced diabetic rats. Asian Pac J Trop Med 4:347–352

    Article  PubMed  Google Scholar 

  69. Sharma AK, Bharti S, Kumar R, Krishnamurthy B, Bhatia J, Kumari S, Arya DS (2012) Syzygium cumini ameliorates insulin resistance and β-Cell dysfunction via modulation of PPAR, dyslipidemia, oxidative stress, and TNF-α in type 2 diabetic rats. J Pharmacol Sci 119:205–213

    Article  CAS  PubMed  Google Scholar 

  70. Suparna M, Ranjana J, Sibabrata M (1998) Indian J. Pharm. Sci. 60:123

    Google Scholar 

  71. Brown DM, Andres GA, Hostetter TH, Mauer SM, Price R, Venkatachalam MA (1982) Kidney complications. Diabetes 31:71–82

    Article  CAS  PubMed  Google Scholar 

  72. García-Galicia MC, Burgueno-Tapia E, Romero-Rojas A, García-Zebadúa JC, Cornejo-Garrido J, Ordaz-Pichardo C (2014) Anti-hyperglycemic effect, inhibition of inflammatory cytokines expression, and histopathology profile in streptozotocin-induced diabetic rats treated with Arracacia tolucensis aerial-parts extracts. J Ethnopharmacol 152:91–98

  73. Risbud MV, Bhonde RR (2002) Models of pancreatic regeneration in diabetes. Diabetes Res Clin Pract 58:155–165

    Article  CAS  PubMed  Google Scholar 

  74. Méndez JD, De Haro Hernández R (2005) l-arginine and polyamine administration protect β-cells against alloxan diabetogenic effect in Sprague-Dawley rats. Biomed Pharmacother 59:283–289

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The author likes to acknowledge and thank the Institutional support and particularly the Research support rendered by Dr. P. Velusamy, Assistant Professor, Department of Biotechnology, School of Bioengineering, SRM University, throughout the research work.

Conflict of interest

The author declares no conflict of interest.

Ethical approval

All procedures performed in the study involving animals were in accordance with the ethical standards of the institution for the care and use of animals (Animal Ethical committee approval Reg. no. 61/IAEC/2011).

Informed Consent

No Informed Consent.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Dhanavathy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhanavathy, G. Immunohistochemistry, histopathology, and biomarker studies of swertiamarin, a secoiridoid glycoside, prevents and protects streptozotocin-induced β-cell damage in Wistar rat pancreas. J Endocrinol Invest 38, 669–684 (2015). https://doi.org/10.1007/s40618-015-0243-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-015-0243-5

Keywords

Navigation