Skip to main content

Advertisement

Log in

Senescent Mesenchymal Stem Cells: Disease Mechanism and Treatment Strategy

  • Skeletal Degeneration and Regeneration (M Pei, Section Editor)
  • Published:
Current Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Mesenchymal stem cells (MSCs) have been extensively studied for therapeutic application in tissue engineering and regenerative medicine. Despite their promise, recent findings suggest that MSC replication during repair process may lead to replicative senescence and stem cell exhaustion. Here, we review the basic mechanisms of MSC senescence, how it leads to degenerative diseases, and potential treatments for such diseases.

Recent Findings

Emerging evidence has shown a link between senescent MSCs and degenerative diseases, especially age-related diseases such as osteoarthritis and idiopathic pulmonary fibrosis. During these disease processes, MSCs undergo cell senescence and mediate Senescence Associated Secretory Phenotypes (SASP) to affect the surrounding microenvironment. Thus, senescent MSCs can accelerate tissue aging by increasing the number of senescent cells and spreading inflammation to neighboring cells.

Summary

Senescent MSCs not only hamper tissue repair through cell senescence associated stem cell exhaustion but also mediate tissue degeneration by initiating and spreading senescence-associated inflammation. It suggests new strategies of MSC-based cell therapy to remove, rejuvenate, or replace (3Rs) the senescent MSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Pittenger MF, Discher DE, Péault BM, Phinney DG, Hare JM, Caplan AI. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med. 2019;4:22. https://doi.org/10.1038/s41536-019-0083-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhou X, Hong Y, Zhang H, Li X. Mesenchymal stem cell senescence and rejuvenation: current status and challenges. Front Cell Dev Biol. 2020;8(364). https://doi.org/10.3389/fcell.2020.00364.

  3. Squillaro T, Peluso G, Galderisi U. Clinical trials with mesenchymal stem cells: an update. Cell Transplant. 2016;25(5):829–48. https://doi.org/10.3727/096368915x689622.

    Article  PubMed  Google Scholar 

  4. Dimmeler S, Leri A. Aging and disease as modifiers of efficacy of cell therapy. Circ Res. 2008;102(11):1319–30. https://doi.org/10.1161/circresaha.108.175943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li Y, Wu Q, Wang Y, Li L, Bu H, Bao J. Senescence of mesenchymal stem cells (review). Int J Mol Med. 2017;39(4):775–82. https://doi.org/10.3892/ijmm.2017.2912.

    Article  CAS  PubMed  Google Scholar 

  6. Neri S, Borzì RM. Molecular mechanisms contributing to mesenchymal stromal cell aging. Biomolecules. 2020;10(2). https://doi.org/10.3390/biom10020340.

  7. Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961;25:585–621. https://doi.org/10.1016/0014-4827(61)90192-6.

    Article  CAS  PubMed  Google Scholar 

  8. Zhou S, Greenberger JS, Epperly MW, Goff JP, Adler C, Leboff MS, et al. Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts. Aging Cell. 2008;7(3):335–43. https://doi.org/10.1111/j.1474-9726.2008.00377.x.

    Article  CAS  PubMed  Google Scholar 

  9. Herbig U, Ferreira M, Condel L, Carey D, Sedivy JM. Cellular senescence in aging primates. Science. 2006;311(5765):1257. https://doi.org/10.1126/science.1122446.

    Article  CAS  PubMed  Google Scholar 

  10. • Franzen J, Zirkel A, Blake J, Rath B, Benes V, Papantonis A, et al. Senescence-associated DNA methylation is stochastically acquired in subpopulations of mesenchymal stem cells. Aging Cell. 2017;16(1):183–91. https://doi.org/10.1111/acel.12544. This work provides evidence of epigenetic modification of DNA associated with aging of MSCs.

    Article  CAS  PubMed  Google Scholar 

  11. Andrzejewska A, Lukomska B, Janowski M. Concise review: Mesenchymal stem cells: from roots to boost. Stem Cells. 2019;37(7):855–64. https://doi.org/10.1002/stem.3016.

    Article  PubMed  PubMed Central  Google Scholar 

  12. • Hu N, Gao Y, Jayasuriya CT, Liu W, Du H, Ding J, et al. Chondrogenic induction of human osteoarthritic cartilage-derived mesenchymal stem cells activates mineralization and hypertrophic and osteogenic gene expression through a mechanomiR. Arthritis Res Ther. 2019;21(1):167. https://doi.org/10.1186/s13075-019-1949-0. This work demonstrates a microRNA dependent mechanism of alteration of differentiation potentials in senescent MSCs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rodier F, Campisi J. Four faces of cellular senescence. J Cell Biol. 2011;192(4):547–56. https://doi.org/10.1083/jcb.201009094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Reitinger S, Schimke M, Klepsch S, de Sneeuw S, Yani SL, Gaßner R, et al. Systemic impact molds mesenchymal stromal/stem cell aging. Transfus Apher Sci. 2015;52(3):285–9. https://doi.org/10.1016/j.transci.2015.04.008.

    Article  PubMed  Google Scholar 

  15. Akyurekli C, Le Y, Richardson RB, Fergusson D, Tay J, Allan DS. A systematic review of preclinical studies on the therapeutic potential of mesenchymal stromal cell-derived microvesicles. Stem Cell Rev Rep. 2015;11(1):150–60. https://doi.org/10.1007/s12015-014-9545-9.

    Article  CAS  PubMed  Google Scholar 

  16. Xie H, Wang Z, Zhang L, Lei Q, Zhao A, Wang H, et al. Development of an angiogenesis-promoting microvesicle-alginate-polycaprolactone composite graft for bone tissue engineering applications. PeerJ. 2016;4:e2040. https://doi.org/10.7717/peerj.2040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yuan QL, Zhang YG, Chen Q. Mesenchymal stem cell (MSC)-derived extracellular vesicles: potential therapeutics as MSC trophic mediators in regenerative medicine. Anat Rec (Hoboken). 2020;303(6):1735–42. https://doi.org/10.1002/ar.24186.

    Article  CAS  Google Scholar 

  18. Lei Q, Liu T, Gao F, Xie H, Sun L, Zhao A, et al. Microvesicles as potential biomarkers for the identification of senescence in human Mesenchymal stem cells. Theranostics. 2017;7(10):2673–89. https://doi.org/10.7150/thno.18915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Toussaint O, Medrano EE, von Zglinicki T. Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes. Exp Gerontol. 2000;35(8):927–45. https://doi.org/10.1016/s0531-5565(00)00180-7.

    Article  CAS  PubMed  Google Scholar 

  20. Stolzing A, Coleman N, Scutt A. Glucose-induced replicative senescence in mesenchymal stem cells. Rejuvenation Res. 2006;9(1):31–5. https://doi.org/10.1089/rej.2006.9.31.

    Article  CAS  PubMed  Google Scholar 

  21. Severino V, Alessio N, Farina A, Sandomenico A, Cipollaro M, Peluso G, et al. Insulin-like growth factor binding proteins 4 and 7 released by senescent cells promote premature senescence in mesenchymal stem cells. Cell Death Dis. 2013;4(11):e911. https://doi.org/10.1038/cddis.2013.445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gharibi B, Farzadi S, Ghuman M, Hughes FJ. Inhibition of Akt/mTOR attenuates age-related changes in Mesenchymal stem cells. Stem Cells. 2014;32(8):2256–66. https://doi.org/10.1002/stem.1709.

    Article  CAS  PubMed  Google Scholar 

  23. Oh J, Lee YD, Wagers AJ. Stem cell aging: mechanisms, regulators and therapeutic opportunities. Nat Med. 2014;20(8):870–80. https://doi.org/10.1038/nm.3651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Goldring MB. Articular cartilage degradation in osteoarthritis. HSS J. 2012;8(1):7–9. https://doi.org/10.1007/s11420-011-9250-z.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Li G, Yin J, Gao J, Cheng TS, Pavlos NJ, Zhang C, et al. Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes. Arthritis Res Ther. 2013;15(6):223. https://doi.org/10.1186/ar4405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Alsalameh S, Amin R, Gemba T, Lotz M. Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage. Arthritis Rheum. 2004;50(5):1522–32. https://doi.org/10.1002/art.20269.

    Article  PubMed  Google Scholar 

  27. Hattori S, Oxford C, Reddi AH. Identification of superficial zone articular chondrocyte stem/progenitor cells. Biochem Biophys Res Commun. 2007;358(1):99–103. https://doi.org/10.1016/j.bbrc.2007.04.142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Grogan SP, Miyaki S, Asahara H, D'Lima DD, Lotz MK. Mesenchymal progenitor cell markers in human articular cartilage: normal distribution and changes in osteoarthritis. Arthritis Res Ther. 2009;11(3):R85. https://doi.org/10.1186/ar2719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fickert S, Fiedler J, Brenner RE. Identification of subpopulations with characteristics of mesenchymal progenitor cells from human osteoarthritic cartilage using triple staining for cell surface markers. Arthritis Res Ther. 2004;6(5):R422–32. https://doi.org/10.1186/ar1210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Su X, Zuo W, Wu Z, Chen J, Wu N, Ma P, et al. CD146 as a new marker for an increased chondroprogenitor cell sub-population in the later stages of osteoarthritis. J Orthop Res. 2015;33(1):84–91. https://doi.org/10.1002/jor.22731.

    Article  CAS  PubMed  Google Scholar 

  31. Jayasuriya CT, Hu N, Li J, Lemme N, Terek R, Ehrlich MG, et al. Molecular characterization of mesenchymal stem cells in human osteoarthritis cartilage reveals contribution to the OA phenotype. Sci Rep. 2018;8(1):7044. https://doi.org/10.1038/s41598-018-25395-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. • Malaise O, Tachikart Y, Constantinides M, Mumme M, Ferreira-Lopez R, Noack S, et al. Mesenchymal stem cell senescence alleviates their intrinsic and seno-suppressive paracrine properties contributing to osteoarthritis development. Aging (Albany NY). 2019;11(20):9128–46. https://doi.org/10.18632/aging.102379. This study demonstrates a paracrine mechanism for the senescent MSCs in synovium and bone marrow to induce cartilage degeneration.

    Article  CAS  Google Scholar 

  33. Martinez FJ, Collard HR, Pardo A, Raghu G, Richeldi L, Selman M, et al. Idiopathic pulmonary fibrosis. Nat Rev Dis Primers. 2017;3:17074. https://doi.org/10.1038/nrdp.2017.74.

    Article  PubMed  Google Scholar 

  34. Cárdenes N, Álvarez D, Sellarés J, Peng Y, Corey C, Wecht S, et al. Senescence of bone marrow-derived mesenchymal stem cells from patients with idiopathic pulmonary fibrosis. Stem Cell Res Ther. 2018;9(1):257. https://doi.org/10.1186/s13287-018-0970-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. •• Xu M, Pirtskhalava T, Farr JN, Weigand BM, Palmer AK, Weivoda MM, et al. Senolytics improve physical function and increase lifespan in old age. Nat Med. 2018;24(8):1246–56. https://doi.org/10.1038/s41591-018-0092-9. A groundbreaking study to demonstrate the anti-aging effects of senolytics in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vicinanza C, Aquila I, Scalise M, Cristiano F, Marino F, Cianflone E, et al. Adult cardiac stem cells are multipotent and robustly myogenic: c-kit expression is necessary but not sufficient for their identification. Cell Death Differ. 2017;24(12):2101–16. https://doi.org/10.1038/cdd.2017.130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Castaldi A, Dodia RM, Orogo AM, Zambrano CM, Najor RH, Gustafsson ÅB, et al. Decline in cellular function of aged mouse c-kit(+) cardiac progenitor cells. J Physiol. 2017;595(19):6249–62. https://doi.org/10.1113/jp274775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lewis-McDougall FC, Ruchaya PJ, Domenjo-Vila E, Shin Teoh T, Prata L, Cottle BJ, et al. Aged-senescent cells contribute to impaired heart regeneration. Aging Cell. 2019;18(3):e12931. https://doi.org/10.1111/acel.12931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. •• Nicaise AM, Wagstaff LJ, Willis CM, Paisie C, Chandok H, Robson P, et al. Cellular senescence in progenitor cells contributes to diminished remyelination potential in progressive multiple sclerosis. Proc Natl Acad Sci U S A. 2019;116(18):9030–9. https://doi.org/10.1073/pnas.1818348116. A nice study to demonstrate the contribution of senescent neural stem cells to multiple sclerosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. • Hladik D, Höfig I, Oestreicher U, Beckers J, Matjanovski M, Bao X, et al. Long-term culture of mesenchymal stem cells impairs ATM-dependent recognition of DNA breaks and increases genetic instability. Stem Cell Res Ther. 2019;10(1):218. https://doi.org/10.1186/s13287-019-1334-6. This work demonstrates molecular mechanisms of cell senescence in long term culture of MSCs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Burhans WC, Weinberger M. DNA replication stress, genome instability and aging. Nucleic Acids Res. 2007;35(22):7545–56. https://doi.org/10.1093/nar/gkm1059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen X, Wang L, Hou J, Li J, Chen L, Xia J, et al. Study on the dynamic biological characteristics of human bone marrow Mesenchymal stem cell senescence. Stem Cells Int. 2019;2019:9271595–9. https://doi.org/10.1155/2019/9271595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jeong SG, Cho GW. Endogenous ROS levels are increased in replicative senescence in human bone marrow mesenchymal stromal cells. Biochem Biophys Res Commun. 2015;460(4):971–6. https://doi.org/10.1016/j.bbrc.2015.03.136.

    Article  CAS  PubMed  Google Scholar 

  44. Lai TP, Wright WE, Shay JW. Comparison of telomere length measurement methods. Philos Trans R Soc Lond Ser B Biol Sci. 2018;373(1741):20160451. https://doi.org/10.1098/rstb.2016.0451.

    Article  CAS  Google Scholar 

  45. Nadeau S, Cheng A, Colmegna I, Rodier F. Quantifying senescence-associated phenotypes in primary multipotent Mesenchymal stromal cell cultures. Methods Mol Biol. 2019;2045:93–105. https://doi.org/10.1007/7651_2019_217.

    Article  CAS  PubMed  Google Scholar 

  46. Herranz N, Gil J. Mechanisms and functions of cellular senescence. J Clin Invest. 2018;128(4):1238–46. https://doi.org/10.1172/jci95148.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ghanta S, Tsoyi K, Liu X, Nakahira K, Ith B, Coronata AA, et al. Mesenchymal stromal cells deficient in autophagy proteins are susceptible to oxidative injury and mitochondrial dysfunction. Am J Respir Cell Mol Biol. 2017;56(3):300–9. https://doi.org/10.1165/rcmb.2016-0061OC.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Revuelta M, Matheu A. Autophagy in stem cell aging. Aging Cell. 2017;16(5):912–5. https://doi.org/10.1111/acel.12655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Eckhart L, Tschachler E, Gruber F. Autophagic control of skin aging. Front Cell Dev Biol. 2019;7:143. https://doi.org/10.3389/fcell.2019.00143.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mortensen M, Watson AS, Simon AK. Lack of autophagy in the hematopoietic system leads to loss of hematopoietic stem cell function and dysregulated myeloid proliferation. Autophagy. 2011;7(9):1069–70. https://doi.org/10.4161/auto.7.9.15886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Huang X, Zhang H, Liang X, Hong Y, Mao M, Han Q, et al. Adipose-derived Mesenchymal stem cells isolated from patients with abdominal aortic aneurysm exhibit senescence phenomena. Oxidative Med Cell Longev. 2019;2019:1305049–12. https://doi.org/10.1155/2019/1305049.

    Article  CAS  Google Scholar 

  52. Kirkland JL, Tchkonia T, Zhu Y, Niedernhofer LJ, Robbins PD. The clinical potential of Senolytic drugs. J Am Geriatr Soc. 2017;65(10):2297–301. https://doi.org/10.1111/jgs.14969.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zhu Y, Tchkonia T, Pirtskhalava T, Gower AC, Ding H, Giorgadze N, et al. The Achilles' heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell. 2015;14(4):644–58. https://doi.org/10.1111/acel.12344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhu Y, Tchkonia T, Fuhrmann-Stroissnigg H, Dai HM, Ling YY, Stout MB, et al. Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell. 2016;15(3):428–35. https://doi.org/10.1111/acel.12445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhu Y, Doornebal EJ, Pirtskhalava T, Giorgadze N, Wentworth M, Fuhrmann-Stroissnigg H, et al. New agents that target senescent cells: the flavone, fisetin, and the BCL-X(L) inhibitors, A1331852 and A1155463. Aging (Albany NY). 2017;9(3):955–63. https://doi.org/10.18632/aging.101202.

    Article  Google Scholar 

  56. •• Justice JN, Nambiar AM, Tchkonia T, LeBrasseur NK, Pascual R, Hashmi SK, et al. Senolytics in idiopathic pulmonary fibrosis: Results from a first-in-human, open-label, pilot study. EBioMedicine. 2019;40:554–63. https://doi.org/10.1016/j.ebiom.2018.12.052. One of the first clinical trials of senolytic treatment of a human aging disease.

    Article  PubMed  PubMed Central  Google Scholar 

  57. McHugh D, Gil J. Senescence and aging: causes, consequences, and therapeutic avenues. J Cell Biol. 2018;217(1):65–77. https://doi.org/10.1083/jcb.201708092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wilson WH, O'Connor OA, Czuczman MS, LaCasce AS, Gerecitano JF, Leonard JP, et al. Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. Lancet Oncol. 2010;11(12):1149–59. https://doi.org/10.1016/s1470-2045(10)70261-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Demaria M, O'Leary MN, Chang J, Shao L, Liu S, Alimirah F, et al. Cellular senescence promotes adverse effects of chemotherapy and Cancer relapse. Cancer Discov. 2017;7(2):165–76. https://doi.org/10.1158/2159-8290.Cd-16-0241.

    Article  CAS  PubMed  Google Scholar 

  60. Mosteiro L, Pantoja C, Alcazar N, Marión RM, Chondronasiou D, Rovira M, et al. Tissue damage and senescence provide critical signals for cellular reprogramming in vivo. Science. 2016;354(6315):aaf4445. https://doi.org/10.1126/science.aaf4445.

    Article  CAS  PubMed  Google Scholar 

  61. Ritschka B, Storer M, Mas A, Heinzmann F, Ortells MC, Morton JP, et al. The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration. Genes Dev. 2017;31(2):172–83. https://doi.org/10.1101/gad.290635.116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yang M, Teng S, Ma C, Yu Y, Wang P, Yi C. Ascorbic acid inhibits senescence in mesenchymal stem cells through ROS and AKT/mTOR signaling. Cytotechnology. 2018;70(5):1301–13. https://doi.org/10.1007/s10616-018-0220-x.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Park SY, Jeong AJ, Kim GY, Jo A, Lee JE, Leem SH, et al. Lactoferrin protects human Mesenchymal stem cells from oxidative stress-induced senescence and apoptosis. J Microbiol Biotechnol. 2017;27(10):1877–84. https://doi.org/10.4014/jmb.1707.07040.

    Article  CAS  PubMed  Google Scholar 

  64. Lin TM, Tsai JL, Lin SD, Lai CS, Chang CC. Accelerated growth and prolonged lifespan of adipose tissue-derived human mesenchymal stem cells in a medium using reduced calcium and antioxidants. Stem Cells Dev. 2005;14(1):92–102. https://doi.org/10.1089/scd.2005.14.92.

    Article  CAS  PubMed  Google Scholar 

  65. Lee JH, Jung HK, Han YS, Yoon YM, Yun CW, Sun HY, et al. Antioxidant effects of Cirsium setidens extract on oxidative stress in human mesenchymal stem cells. Mol Med Rep. 2016;14(4):3777–84. https://doi.org/10.3892/mmr.2016.5706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lee JH, Yoon YM, Song KH, Noh H, Lee SH. Melatonin suppresses senescence-derived mitochondrial dysfunction in mesenchymal stem cells via the HSPA1L-mitophagy pathway. Aging Cell. 2020;19(3):e13111. https://doi.org/10.1111/acel.13111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kornienko JS, Smirnova IS, Pugovkina NA, Ivanova JS, Shilina MA, Grinchuk TM, et al. High doses of synthetic antioxidants induce premature senescence in cultivated mesenchymal stem cells. Sci Rep. 2019;9(1):1296. https://doi.org/10.1038/s41598-018-37972-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dai Z, Jin Y, Zheng J, Liu K, Zhao J, Zhang S, et al. MiR-217 promotes cell proliferation and osteogenic differentiation of BMSCs by targeting DKK1 in steroid-associated osteonecrosis. Biomed Pharmacother. 2019;109:1112–9. https://doi.org/10.1016/j.biopha.2018.10.166.

    Article  CAS  PubMed  Google Scholar 

  69. Li H, Fan J, Fan L, Li T, Yang Y, Xu H, et al. MiRNA-10b reciprocally stimulates osteogenesis and inhibits adipogenesis partly through the TGF-β/SMAD2 signaling pathway. Aging Dis. 2018;9(6):1058–73. https://doi.org/10.14336/ad.2018.0214.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Fan J, An X, Yang Y, Xu H, Fan L, Deng L, et al. MiR-1292 targets FZD4 to regulate senescence and osteogenic differentiation of stem cells in TE/SJ/mesenchymal tissue system via the Wnt/β-catenin pathway. Aging Dis. 2018;9(6):1103–21. https://doi.org/10.14336/ad.2018.1110.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Galkin F, Zhang B, Dmitriev SE, Gladyshev VN. Reversibility of irreversible aging. Ageing Res Rev. 2019;49:104–14. https://doi.org/10.1016/j.arr.2018.11.008.

    Article  PubMed  Google Scholar 

  72. Hynes K, Menicanin D, Han J, Marino V, Mrozik K, Gronthos S, et al. Mesenchymal stem cells from iPS cells facilitate periodontal regeneration. J Dent Res. 2013;92(9):833–9. https://doi.org/10.1177/0022034513498258.

    Article  CAS  PubMed  Google Scholar 

  73. Spitzhorn LS, Megges M, Wruck W, Rahman MS, Otte J, Degistirici Ö, et al. Human iPSC-derived MSCs (iMSCs) from aged individuals acquire a rejuvenation signature. Stem Cell Res Ther. 2019;10(1):100. https://doi.org/10.1186/s13287-019-1209-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fernandez-Rebollo E, Franzen J, Goetzke R, Hollmann J, Ostrowska A, Oliverio M, et al. Senescence-associated Metabolomic phenotype in primary and iPSC-derived Mesenchymal stromal cells. Stem Cell Reports. 2020;14(2):201–9. https://doi.org/10.1016/j.stemcr.2019.12.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kornicka K, Marycz K, Marędziak M, Tomaszewski KA, Nicpoń J. The effects of the DNA methyltranfserases inhibitor 5-Azacitidine on ageing, oxidative stress and DNA methylation of adipose derived stem cells. J Cell Mol Med. 2017;21(2):387–401. https://doi.org/10.1111/jcmm.12972.

    Article  CAS  PubMed  Google Scholar 

  76. Assis RIF, Wiench M, Silvério KG, da Silva RA, Feltran GDS, Sallum EA, et al. RG108 increases NANOG and OCT4 in bone marrow-derived mesenchymal cells through global changes in DNA modifications and epigenetic activation. PLoS One. 2018;13(12):e0207873. https://doi.org/10.1371/journal.pone.0207873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gao B, Lin X, Jing H, Fan J, Ji C, Jie Q, et al. Local delivery of tetramethylpyrazine eliminates the senescent phenotype of bone marrow mesenchymal stromal cells and creates an anti-inflammatory and angiogenic environment in aging mice. Aging Cell. 2018;17(3):e12741. https://doi.org/10.1111/acel.12741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ito T, Teo YV, Evans SA, Neretti N, Sedivy JM. Regulation of cellular senescence by Polycomb chromatin modifiers through distinct DNA damage- and histone methylation-dependent pathways. Cell Rep. 2018;22(13):3480–92. https://doi.org/10.1016/j.celrep.2018.03.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH R61 AR076807 and P30 GM122732 (to Q.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Chen.

Ethics declarations

Conflict of Interest

Yajun Liu declares no potential conflict of interest. Qian Chen holds patents relevant to human cartilage derived mesenchymal stem cells and is a co-founder of NanoDe Therapeutics Inc.

Human and Animal Rights and Informed Consent

This article contains no new studies with human and animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Skeletal Degeneration and Regeneration

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Chen, Q. Senescent Mesenchymal Stem Cells: Disease Mechanism and Treatment Strategy. Curr Mol Bio Rep 6, 173–182 (2020). https://doi.org/10.1007/s40610-020-00141-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40610-020-00141-0

Keywords

Navigation