Skip to main content
Log in

MicroRNAs and Connexins in Bone: Interaction and Mechanisms of Delivery

  • Molecular Biology of Skeletal Development (T Bellido, Section Editor)
  • Published:
Current Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To describe the current knowledge on the cross-talk between connexins and microRNAs (miRs) in bone cells.

Recent Findings

Connexins play a crucial role on bone development and maintenance, and disruptions in their abundance or localization can affect how bone perceives and responds to mechanical, hormonal, and pharmacological stimuli. Connexin expression can be modified by miRs, which modulate connexin mRNA and protein levels. Recently, different manners by which miRs and connexins can interact in the bone have been identified, including mechanisms that mediate miR exchange between cells in direct contact through gap junctions or between distant cells via extracellular vesicles (EVs).

Summary

We bring to light the relationship between miRs and connexins in bone tissue, with special focus on regulatory effects of miRs and connexins on gene expression, as well as the mechanisms that mediate miR exchange between cells in direct contact through gap junctions or between distant cells via EVs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Plotkin LI, Stains JP. Connexins and pannexins in the skeleton: gap junctions, hemichannels and more. Cell Mol Life Sci. 2015;72:2853–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Batra N, Kar R, Jiang JX. Gap junctions and hemichannels in signal transmission, function and development of bone. Biochim Biophys Acta. 2012;1818:1909–18.

    Article  CAS  PubMed  Google Scholar 

  3. Saez JC, Martinez AD, Branes MC, et al. Regulation of gap junctions by protein phosphorylation. Braz J Med Biol Res. 1998;31:593–600.

    Article  CAS  PubMed  Google Scholar 

  4. Valiunas V, Polosina YY, Miller H, et al. Connexin-specific cell to cell transfer of short interfering RNA by gap junctions. J Physiol. 2005;568:459–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lemcke H, Steinhoff G, David R. Gap junctional shuttling of miRNA—a novel pathway of intercellular gene regulation and its prospects in clinical application. Cell Signal. 2015;27:2506–14.

    Article  CAS  PubMed  Google Scholar 

  6. Abels ER, Breakefield XO. Introduction to extracellular vesicles: biogenesis, RNA cargo selection, content, release, and uptake. Cell Mol Neurobiol. 2016;36:301–12.

    Article  CAS  PubMed  Google Scholar 

  7. Xie Y, Chen Y, Zhang L, et al. The roles of bone-derived exosomes and exosomal microRNAs in regulating bone remodelling. J Cell Mol Med. 2016:1–9.

  8. Evans WH. Cell communication across gap junctions: a historical perspective and current developments. Biochem Soc Trans. 2015;43:450–9.

    Article  CAS  PubMed  Google Scholar 

  9. Oshima A. Structure and closure of connexin gap junction channels. FEBS Lett. 2014;588:1230–7.

    Article  CAS  PubMed  Google Scholar 

  10. Martin PE, Evans WH. Incorporation of connexins into plasma membranes and gap junctions. Cardiovasc Res. 2004;62:378–87.

    Article  CAS  PubMed  Google Scholar 

  11. Plotkin LI, Bellido T. Beyond gap junctions: connexin43 and bone cell signaling. Bone. 2013;52:157–66.

    Article  CAS  PubMed  Google Scholar 

  12. Plotkin LI. Connexin 43 hemichannels and intracellular signaling in bone cells. Front Physiol. 2014;5:131.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Paznekas WA, Boyadjiev SA, Shapiro RE, et al. Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia. Am J Hum Genet. 2003;72:408–18.

    Article  CAS  PubMed  Google Scholar 

  14. Koval M, Harley JE, Hick E, et al. Connexin46 is retained as monomers in a trans-Golgi compartment of osteoblastic cells. J Cell Biol. 1997;137:847–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Minkoff R, Rundus VR, Parker SB, et al. Gap junction proteins exhibit early and specific expression during intramembranous bone formation in the developing chick mandible. Anat Embryol (Berl). 1994;190:231–41.

    Article  CAS  Google Scholar 

  16. Pizard A, Burgon PG, Paul DL, et al. Connexin 40, a target of transcription factor Tbx5, patterns wrist, digits, and sternum. Mol Cell Biol. 2005;25:5073–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pacheco-Costa R, Hassan I, Reginato RD, et al. High bone mass in mice lacking Cx37 due to defective osteoclast differentiation. J Biol Chem. 2014;289:8508–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pacheco-Costa R, Kadakia JR, Atkinson EG, et al. Connexin37 deficiency alters organic bone matrix, cortical bone geometry, and increases Wnt/beta-catenin signaling. Bone. 2017;97:105–13.

    Article  CAS  PubMed  Google Scholar 

  19. Lecanda F, Warlow PM, Sheikh S, et al. Connexin43 deficiency causes delayed ossification, craniofacial abnormalities, and osteoblast dysfunction. J Cell Biol. 2000;151:931–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Plotkin LI, Laird DW, Amedee J. Role of connexins and pannexins during ontogeny, regeneration, and pathologies of bone. BMC Cell Biol. 2016;17:29–38.

    Article  Google Scholar 

  21. Sternlieb M, Paul E, Donahue HJ, et al. Ablation of connexin 43 in osteoclasts leads to decreased in vivo osteoclastogenesis. J Bone Miner Res. 2012;27:S53.

    Google Scholar 

  22. Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15:509–24.

    Article  CAS  PubMed  Google Scholar 

  23. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–54.

    Article  CAS  PubMed  Google Scholar 

  24. Ambros V, Bartel B, Bartel DP, et al. A uniform system for microRNA annotation. RNA. 2003;9:277–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tetreault N, De G V. MiRNAs: their discovery, biogenesis and mechanism of action. Clin Biochem. 2013;46:842–5.

    Article  CAS  PubMed  Google Scholar 

  26. Garzon R, Calin GA, Croce CM. MicroRNAs in cancer. Annu Rev Med. 2009;60:167–79.

    Article  CAS  PubMed  Google Scholar 

  27. Sun M, Zhou X, Chen L, et al. The regulatory roles of microRNAs in bone remodeling and perspectives as biomarkers in osteoporosis. Biomed Res Int. 2016;2016:1652417.

    PubMed  PubMed Central  Google Scholar 

  28. Ell B, Kang Y. MicroRNAs as regulators of bone homeostasis and bone metastasis. Bonekey Rep. 2014;3:549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Papaioannou G, Mirzamohammadi F, Kobayashi T. MicroRNAs involved in bone formation. Cell Mol Life Sci. 2014;71:4747–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. van der Eerden BC. MicroRNAs in the skeleton: cell-restricted or potent intercellular communicators? Arch Biochem Biophys. 2014;561:46–55.

    Article  PubMed  Google Scholar 

  31. Turchinovich A, Tonevitsky AG, Burwinkel B. Extracellular miRNA: a collision of two paradigms. Trends Biochem Sci. 2016;41:883–92.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang J, Li S, Li L, et al. Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics. 2015;13:17–24.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mulcahy LA, Pink RC, Carter DR. Routes and mechanisms of extracellular vesicle uptake. J. Extracell. Vesicles. 2014. 3

  34. Lo CA, Stahl PD, Raposo G. Extracellular vesicles shuffling intercellular messages: for good or for bad. Curr Opin Cell Biol. 2015;35:69–77.

    Article  Google Scholar 

  35. Schwab A, Meyering SS, Lepene B, et al. Extracellular vesicles from infected cells: potential for direct pathogenesis. Front Microbiol. 2015;6:1132.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Buzas EI, Gyorgy B, Nagy G, et al. Emerging role of extracellular vesicles in inflammatory diseases. Nat Rev Rheumatol. 2014;10:356–64.

    Article  CAS  PubMed  Google Scholar 

  37. Ciardiello C, Cavallini L, Spinelli C, et al. Focus on extracellular vesicles: new frontiers of cell-to-cell communication in cancer. Int J Mol Sci. 2016;17

  38. • Soares AR, Martins-Marques T, Ribeiro-Rodrigues T, et al. Gap junctional protein Cx43 is involved in the communication between extracellular vesicles and mammalian cells. Sci Rep. 2015;5:13243. This article shows the presence of Cx43 hemichannels in exosomes and its important participation on the delivery of nucleic acid to recipient cells and their trasnference between exosomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Varela-Eirin M, Varela-Vazquez A, Mateos MR. et al. Recruitment of RNA molecules by connexin RNA-binding motifs: implication in RNA and DNA transport through microvesicles and exosomes. Biochim. Biophys. Acta 2017

  40. Inose H, Ochi H, Kimura A, et al. A microRNA regulatory mechanism of osteoblast differentiation. Proc Natl Acad Sci U S A. 2009;106:20794–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu G, Luo G, Bo Z, et al. Impaired osteogenic differentiation associated with connexin43/microRNA-206 in steroid-induced avascular necrosis of the femoral head. Exp Mol Pathol. 2016;101:89–99.

    Article  CAS  PubMed  Google Scholar 

  42. • Gindin Y, Jiang Y, Francis P, et al. MiR-23a impairs bone differentiation in osteosarcoma via down-regulation of GJA1. Front Genet. 2015;6:233. This article evidence the Cx43 regulation by miR in a osteoblastic cell lineage. This article shows Cx43 regulation by miRs in a cell of osteoblastic lineage.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ozeki N, Hase N, Hiyama T et al. MicroRNA-211 and autophagy-related gene 14 signaling regulate osteoblast-like cell differentiation of human induced pluripotent stem cells. Exp. Cell Res. 2017

  44. Bejarano E, Yuste A, Patel B. et al. Connexins modulate autophagosome biogenesis. Nat. Cell Biol. 2014

  45. •• Davis HM, Pacheco-Costa R, Atkinson EG, et al. Disruption of the Cx43/miR21 pathway leads to osteocyte apoptosis and increased osteoclastogenesis with aging. Aging Cell. 2017; doi:10.1111/acel.12586. This article shows the requirement of Cx43 and miR21 to maintain osteocyte survival and identified RANKL and HMGB1 as two molecules involved with elevated osteoclastogenesis. In addition, provides the first description of miR regulation via connexin in osteocytic cells.

    PubMed  Google Scholar 

  46. Zong L, Zhu Y, Liang R, et al. Gap junction mediated miRNA intercellular transfer and gene regulation: a novel mechanism for intercellular genetic communication. Sci. Rep. 2016;6:19884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lim PK, Bliss SA, Patel SA, et al. Gap junction-mediated import of microRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Res. 2011;71:1550–60.

    Article  CAS  PubMed  Google Scholar 

  48. Vojtech L, Woo S, Hughes S, et al. Exosomes in human semen carry a distinctive repertoire of small non-coding RNAs with potential regulatory functions. Nucleic Acids Res. 2014;42:7290–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Deng L, Wang Y, Peng Y, et al. Osteoblast-derived microvesicles: a novel mechanism for communication between osteoblasts and osteoclasts. Bone. 2015;79:37–42.

    Article  CAS  PubMed  Google Scholar 

  50. Cui Y, Luan J, Li H, et al. Exosomes derived from mineralizing osteoblasts promote ST2 cell osteogenic differentiation by alteration of microRNA expression. FEBS Lett. 2016;590:185–92.

    Article  CAS  PubMed  Google Scholar 

  51. Lauvrak SU, Munthe E, Kresse SH, et al. Functional characterisation of osteosarcoma cell lines and identification of mRNAs and miRNAs associated with aggressive cancer phenotypes. Br J Cancer. 2013;109:2228–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hassan MQ, Maeda Y, Taipaleenmaki H, et al. MiR-218 directs a Wnt signaling circuit to promote differentiation of osteoblasts and osteomimicry of metastatic cancer cells. J Biol Chem. 2012;287:42084–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bhushan R, Grunhagen J, Becker J, et al. MiR-181a promotes osteoblastic differentiation through repression of TGF-beta signaling molecules. Int. J. Biochem. Cell Biol. 2013;45:696–705.

    CAS  Google Scholar 

  54. Kim YJ, Bae SW, Yu SS, et al. MiR-196a regulates proliferation and osteogenic differentiation in mesenchymal stem cells derived from human adipose tissue. J Bone Miner Res. 2009;24:816–25.

    Article  CAS  PubMed  Google Scholar 

  55. Qin Y, Wang L, Gao Z, et al. Bone marrow stromal/stem cell-derived extracellular vesicles regulate osteoblast activity and differentiation in vitro and promote bone regeneration in vivo. Sci Rep. 2016;6:21961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Egea V, Zahler S, Rieth N, et al. Tissue inhibitor of metalloproteinase-1 (TIMP-1) regulates mesenchymal stem cells through let-7f microRNA and Wnt/beta-catenin signaling. Proc Natl Acad Sci U S A. 2012;109:E309–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wei J, Li H, Wang S, et al. Let-7 enhances osteogenesis and bone formation while repressing adipogenesis of human stromal/mesenchymal stem cells by regulating HMGA2. Stem Cells Dev. 2014;23:1452–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schaap-Oziemlak AM, Raymakers RA, Bergevoet SM, et al. MicroRNA hsa-miR-135b regulates mineralization in osteogenic differentiation of human unrestricted somatic stem cells. Stem Cells Dev. 2010;19:877–85.

    Article  CAS  PubMed  Google Scholar 

  59. Xu S, Cecilia SG, De VK, et al. Upregulation of miR-135b is involved in the impaired osteogenic differentiation of mesenchymal stem cells derived from multiple myeloma patients. PLoS One. 2013;8:e79752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Huang J, Zhao L, Xing L, et al. MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation. Stem Cells. 2010;28:357–64.

    PubMed  PubMed Central  Google Scholar 

  61. Xu JF, Yang GH, Pan XH, et al. Altered microRNA expression profile in exosomes during osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. PLoS One. 2014;9:e114627.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Zhang J, Tu Q, Bonewald LF, et al. Effects of miR-335-5p in modulating osteogenic differentiation by specifically downregulating Wnt antagonist DKK1. J Bone Miner Res. 2011;26:1953–63.

    Article  CAS  PubMed  Google Scholar 

  63. You L, Gu W, Chen L, et al. MiR-378 overexpression attenuates high glucose-suppressed osteogenic differentiation through targeting CASP3 and activating PI3K/Akt signaling pathway. Int J Clin Exp Pathol. 2014;7:7249–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang Y, Xie RL, Croce CM, et al. A program of microRNAs controls osteogenic lineage progression by targeting transcription factor Runx2. Proc Natl Acad Sci U S A. 2011;108:9863–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li Z, Hassan MQ, Volinia S, et al. A microRNA signature for a BMP2-induced osteoblast lineage commitment program. Proc Natl Acad Sci U S A. 2008;105:13906–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hwang S, Park SK, Lee HY, et al. MiR-140-5p suppresses BMP2-mediated osteogenesis in undifferentiated human mesenchymal stem cells. FEBS Lett. 2014;588:2957–63.

    Article  CAS  PubMed  Google Scholar 

  67. Cheng P, Chen C, He HB, et al. MiR-148a regulates osteoclastogenesis by targeting V-maf musculoaponeurotic fibrosarcoma oncogene homolog B. J Bone Miner Res. 2013;28:1180–90.

    Article  CAS  PubMed  Google Scholar 

  68. Chen C, Cheng P, Xie H, et al. MiR-503 regulates osteoclastogenesis via targeting RANK. J Bone Miner Res. 2014;29:338–47.

    Article  CAS  PubMed  Google Scholar 

  69. Zhao C, Sun W, Zhang P, et al. MiR-214 promotes osteoclastogenesis by targeting Pten/PI3k/Akt pathway. RNA Biol. 2015;12:343–53.

    Article  PubMed  PubMed Central  Google Scholar 

  70. •• Li D, Liu J, Guo B, et al. Osteoclast-derived exosomal miR-214-3p inhibits osteoblastic bone formation. Nat Commun. 2016;7:10872. This article shows the osteoclast-derived exosomes released from ovariectomized mice and elderly fractured women contain a miR able to target osteoblasts and then inhibit bone formation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kim YH, Goh TS, Lee CS. et al. Prognostic value of microRNAs in osteosarcoma: a meta-analysis. Oncotarget. 2017

  72. Peng S, Gao D, Gao C. et al. MicroRNAs regulate signaling pathways in osteogenic differentiation of mesenchymal stem cells (Review). Mol. Med. Rep. 2016

  73. Burke J, Kolhe R, Hunter M, et al. Stem cell-derived exosomes: a potential alternative therapeutic agent in orthopaedics. Stem Cells Int. 2016;2016:5802529.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Burke J, Hunter M, Kolhe R, et al. Therapeutic potential of mesenchymal stem cell based therapy for osteoarthritis. Clin Transl Med. 2016;5:27.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Sasso L, Hosamuddin H, Emanueli C. Extracellular vesicles at the cross-line between basic science and clinical needs. Microcirculation. 2017. 24

  76. Valiunas V, Doronin S, Valiuniene L, et al. Human mesenchymal stem cells make cardiac connexins and form functional gap junctions. J Physiol. 2004;555:617–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hahn JY, Cho HJ, Kang HJ, et al. Pre-treatment of mesenchymal stem cells with a combination of growth factors enhances gap junction formation, cytoprotective effect on cardiomyocytes, and therapeutic efficacy for myocardial infarction. J Am Coll Cardiol. 2008;51:933–43.

    Article  CAS  PubMed  Google Scholar 

  78. Wang KX, Xu LL, Rui YF, et al. The effects of secretion factors from umbilical cord derived mesenchymal stem cells on osteogenic differentiation of mesenchymal stem cells. PLoS One. 2015;10:e0120593.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Qi X, Zhang J, Yuan H, et al. Exosomes secreted by human-induced pluripotent stem cell-derived mesenchymal stem cells repair critical-sized bone defects through enhanced angiogenesis and osteogenesis in osteoporotic rats. Int J Biol Sci. 2016;12:836–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Huang-Doran I, Zhang CY, Vidal-Puig A. Extracellular vesicles: novel mediators of cell communication in metabolic disease. Trends Endocrinol Metab. 2017;28:3–18.

    Article  CAS  PubMed  Google Scholar 

  81. Heldring N, Mager I, Wood MJ, et al. Therapeutic potential of multipotent mesenchymal stromal cells and their extracellular vesicles. Hum Gene Ther. 2015;26:506–17.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Institutes of Health (R01-AR067210 and R01-AR053643 to LIP). HMD is supported by an NIH T32-AR065971 grant. RPC received a scholarship from the Coordination of Improvement of Higher Level Personnel (CAPES), Brazil (PDE# 232636/2014-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lilian I. Plotkin.

Ethics declarations

Conflict of Interest

Lilian I. Plotkin, Rafael Pacheco-Costa, and Hannah M. Davis declare that they have no potential conflicts of interest.

Human and Animal Rights and Informed Consent

The protocols involving mice were approved by the Institutional Animal Care and Use Committee of the Indiana University School of Medicine. This article does not contain studies with human subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Molecular Biology of Skeletal Development

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plotkin, L.I., Pacheco-Costa, R. & Davis, H.M. MicroRNAs and Connexins in Bone: Interaction and Mechanisms of Delivery. Curr Mol Bio Rep 3, 63–70 (2017). https://doi.org/10.1007/s40610-017-0058-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40610-017-0058-6

Keywords

Navigation