Skip to main content

Advertisement

Log in

Flavivirus Pathogenesis in the Mosquito Transmission Vector

  • Virology (A Nicola, Section Editor)
  • Published:
Current Clinical Microbiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

We hope to provide an overview of flavivirus pathogenesis in the mosquito, including the mosquito immune response to infection.

Recent Findings

There has been a great deal of research in the past decade examining interactions of flaviviruses with mosquito proteins as well as the complex immune reaction to flavivirus infection. We also touch upon novel strategies to prevent mosquito infection with flaviviruses of human importance.

Summary

The mosquito is a crucial component of the flavivirus transmission cycle, and thus, it is vital to thoroughly examine flavivirus pathogenesis in the mosquito vector. There have been some important recent findings in this area yet further research is needed for a comprehensive picture of mosquito-human flavivirus transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Mackenzie JS, Gubler DJ, Petersen LR. Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nat Med. 2004;10(12 Suppl):S98–109.

    Article  CAS  PubMed  Google Scholar 

  2. Feldmann H, Slenczka W, Klenk HD. Emerging and reemerging of filoviruses. Arch Virol Suppl. 1996;11:77–100.

    CAS  PubMed  Google Scholar 

  3. Solomon T, Mallewa M. Dengue and other emerging flaviviruses. The Journal of infection. 2001;42(2):104–15.

    Article  CAS  PubMed  Google Scholar 

  4. Ashraf U, Ye J, Ruan X, Wan S, Zhu B, Cao S. Usutu virus: an emerging flavivirus in Europe. Viruses. 2015;7(1):219–38.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hayes EB, Gubler DJ. West Nile virus: epidemiology and clinical features of an emerging epidemic in the United States. Annu Rev Med. 2006;57:181–94.

    Article  CAS  PubMed  Google Scholar 

  6. Howard CR. Aedes mosquitoes and Zika virus infection: an A to Z of emergence? Emerging microbes & infections. 2016;5:e16.

    Article  CAS  Google Scholar 

  7. Weaver SC, Costa F, Garcia-Blanco MA, Ko AI, Ribeiro GS, Saade G, et al. Zika virus: history, emergence, biology, and prospects for control. Antivir Res. 2016;130:69–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vasilakis N, Weaver SC. Flavivirus transmission focusing on Zika. Current opinion in virology. 2017;22:30–5.

    Article  PubMed  Google Scholar 

  9. Song BH, Yun SI, Woolley M, Lee YM. Zika virus: history, epidemiology, transmission, and clinical presentation. J Neuroimmunol. 2017;

  10. Duffy MR, Chen TH, Hancock WT, Powers AM, Kool JL, Lanciotti RS, et al. Zika virus outbreak on Yap Island, Federated States of Micronesia. N Engl J Med. 2009;360(24):2536–43.

    Article  CAS  PubMed  Google Scholar 

  11. Lanciotti RS, Kosoy OL, Laven JJ, Velez JO, Lambert AJ, Johnson AJ, et al. Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerg Infect Dis. 2008;14(8):1232–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cao-Lormeau VM, Blake A, Mons S, Lastere S, Roche C, Vanhomwegen J, et al. Guillain-Barre syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. Lancet. 2016;

  13. Weaver SC. Emergence of epidemic Zika virus transmission and congenital Zika syndrome: are recently evolved traits to blame? mBio. 2017;8(1)

  14. Paules CI, Fauci AS. Yellow fever—once again on the radar screen in the Americas. N Engl J Med 2017.

  15. Gardner CL, Ryman KD. Yellow fever: a reemerging threat. Clin Lab Med. 2010;30(1):237–60.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tomori O. Yellow fever: the recurring plague. Crit Rev Clin Lab Sci. 2004;41(4):391–427.

    Article  CAS  PubMed  Google Scholar 

  17. Gubler DJ, Clark GG. Dengue/dengue hemorrhagic fever: the emergence of a global health problem. Emerg Infect Dis. 1995;1(2):55–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gubler DJ. Dengue, urbanization and globalization: the unholy trinity of the 21(st) century. Tropical medicine and health. 2011;39(4 Suppl):3–11.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cheng Q, Jing Q, Spear RC, Marshall JM, Yang Z, Gong P. Climate and the timing of imported cases as determinants of the dengue outbreak in Guangzhou, 2014: evidence from a mathematical model. PLoS Negl Trop Dis. 2016;10(2):e0004417.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Schneider BS, Soong L, Girard YA, Campbell G, Mason P, Higgs S. Potentiation of West Nile encephalitis by mosquito feeding. Viral Immunol. 2006;19(1):74–82.

    Article  CAS  PubMed  Google Scholar 

  21. Campbell GL, Marfin AA, Lanciotti RS, Gubler DJ. West Nile virus. Lancet Infect Dis. 2002;2(9):519–29.

    Article  PubMed  Google Scholar 

  22. Kilpatrick AM, Kramer LD, Campbell SR, Alleyne EO, Dobson AP, Daszak P. West Nile virus risk assessment and the bridge vector paradigm. Emerg Infect Dis. 2005;11(3):425–9.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Althouse BM, Vasilakis N, Sall AA, Diallo M, Weaver SC, Hanley KA. Potential for Zika virus to establish a sylvatic transmission cycle in the Americas. PLoS Negl Trop Dis. 2016;10(12):e0005055.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lanciotti RS, Roehrig JT, Deubel V, Smith J, Parker M, Steele K, et al. Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science. 1999;286(5448):2333–7.

    Article  CAS  PubMed  Google Scholar 

  25. Bhattacharya MK, Maitra S, Ganguly A, Bhattacharya A, Sinha A. Dengue: a growing menace—a snapshot of recent facts, figures & remedies. Int J Biomed Sci: IJBS. 2013;9(2):61–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen CM, Chan KS, Yu WL, Cheng KC, Chao HC, Yeh CY, et al. The outcomes of patients with severe dengue admitted to intensive care units. Medicine. 2016;95(31):e4376.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Guzman MG, Halstead SB, Artsob H, Buchy P, Farrar J, Gubler DJ, et al. Dengue: a continuing global threat. Nat Rev Microbiol. 2010;8(12 Suppl):S7–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kyle JL, Harris E. Global spread and persistence of dengue. Annu Rev Microbiol. 2008;62:71–92.

    Article  CAS  PubMed  Google Scholar 

  29. Samy AM, Elaagip AH, Kenawy MA, Ayres CF, Peterson AT, Soliman DE. Climate change influences on the global potential distribution of the mosquito Culex quinquefasciatus, vector of West Nile virus and lymphatic filariasis. PLoS One. 2016;11(10):e0163863.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Jansen CC, Beebe NW. The dengue vector Aedes aegypti: what comes next. Microbes Infect/Institut Pasteur. 2010;12(4):272–9.

    Article  Google Scholar 

  31. Goddard LB, Roth AE, Reisen WK, Scott TW. Vertical transmission of West Nile virus by three California Culex (Diptera: Culicidae) species. J Med Entomol. 2003;40(6):743–6.

    Article  PubMed  Google Scholar 

  32. Halstead SB. Dengue virus-mosquito interactions. Annu Rev Entomol. 2008;53:273–91.

    Article  CAS  PubMed  Google Scholar 

  33. Liao CM, Huang TL, Cheng YH, Chen WY, Hsieh NH, Chen SC, et al. Assessing dengue infection risk in the southern region of Taiwan: implications for control. Epidemiol Infect. 2015;143(5):1059–72.

    Article  PubMed  Google Scholar 

  34. Carney RM, Husted S, Jean C, Glaser C, Kramer V. Efficacy of aerial spraying of mosquito adulticide in reducing incidence of West Nile virus, California, 2005. Emerg Infect Dis. 2008;14(5):747–54.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kilpatrick AM, Kramer LD, Jones MJ, Marra PP, Daszak P. West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior. PLoS Biol. 2006;4(4):e82.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bowman LR, Runge-Ranzinger S, McCall PJ. Assessing the relationship between vector indices and dengue transmission: a systematic review of the evidence. PLoS Negl Trop Dis. 2014;8(5):e2848.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Brown JE, Evans BR, Zheng W, Obas V, Barrera-Martinez L, Egizi A, et al. Human impacts have shaped historical and recent evolution in Aedes aegypti, the dengue and yellow fever mosquito. Evol Int J Org Evol. 2014;68(2):514–25.

    Article  CAS  Google Scholar 

  38. Harrigan RJ, Thomassen HA, Buermann W, Smith TB. A continental risk assessment of West Nile virus under climate change. Glob Chang Biol. 2014;20(8):2417–25.

    Article  PubMed  Google Scholar 

  39. Kraemer MU, Sinka ME, Duda KA, Mylne AQ, Shearer FM, Barker CM, et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. eLife. 2015;4:e08347.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Faraji A, Egizi A, Fonseca DM, Unlu I, Crepeau T, Healy SP, et al. Comparative host feeding patterns of the Asian tiger mosquito, Aedes albopictus, in urban and suburban Northeastern USA and implications for disease transmission. PLoS Negl Trop Dis. 2014;8(8):e3037.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hardy JL, Houk EJ, Kramer LD, Reeves WC. Intrinsic factors affecting vector competence of mosquitoes for arboviruses. Annu Rev Entomol. 1983;28:229–62.

    Article  CAS  PubMed  Google Scholar 

  42. Huang YJ, Higgs S, Horne KM, Vanlandingham DL. Flavivirus-mosquito interactions. Viruses. 2014;6(11):4703–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Conway MJ, Colpitts TM, Fikrig E. Role of the vector in arbovirus transmission. Ann Rev Virol. 2014;1(1):71–88.

    Article  Google Scholar 

  44. Carlson CJ, Dougherty ER, Getz W. An ecological assessment of the pandemic threat of Zika virus. PLoS Negl Trop Dis. 2016;10(8):e0004968.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hahn MB, Eisen RJ, Eisen L, Boegler KA, Moore CG, McAllister J, et al. Reported distribution of Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus in the United States, 1995–2016 (Diptera: Culicidae). J Med Entomol. 2016;

  46. Plourde AR, Bloch EM. A literature review of Zika virus. Emerg Infect Dis. 2016;22(7):1185–92.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Chouin-Carneiro T, Vega-Rua A, Vazeille M, Yebakima A, Girod R, Goindin D, et al. Differential susceptibilities of Aedes aegypti and Aedes albopictus from the Americas to Zika virus. PLoS Negl Trop Dis. 2016;10(3):e0004543.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ciota AT, Chin PA, Kramer LD. The effect of hybridization of Culex pipiens complex mosquitoes on transmission of West Nile virus. Parasit Vectors. 2013;6(1):305.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ciota AT, Kramer LD. Vector-virus interactions and transmission dynamics of West Nile virus. Viruses. 2013;5(12):3021–47.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Behura SK, Gomez-Machorro C, Harker BW, deBruyn B, Lovin DD, Hemme RR, et al. Global cross-talk of genes of the mosquito Aedes aegypti in response to dengue virus infection. PLoS Negl Trop Dis. 2011;5(11):e1385.

  51. Ye YH, Carrasco AM, Frentiu FD, Chenoweth SF, Beebe NW, van den Hurk AF, et al. Wolbachia reduces the transmission potential of dengue-infected Aedes aegypti. PLoS Negl Trop Dis. 2015;9(6):e0003894.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Vega-Rua A, Lourenco-de-Oliveira R, Mousson L, Vazeille M, Fuchs S, Yebakima A, et al. Chikungunya virus transmission potential by local Aedes mosquitoes in the Americas and Europe. PLoS Negl Trop Dis. 2015;9(5):e0003780.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Black WC, Bennett KE, Gorrochotegui-Escalante N, Barillas-Mury CV, Fernandez-Salas I, de Lourdes MM, et al. Flavivirus susceptibility in Aedes aegypti. Arch Med Res. 2002;33(4):379–88.

    Article  CAS  PubMed  Google Scholar 

  54. Cheng G, Liu Y, Wang P, Xiao X. Mosquito defense strategies against viral infection. Trends Parasitol. 2016;32(3):177–86.

    Article  PubMed  Google Scholar 

  55. Grubaugh ND, Ebel GD. Dynamics of West Nile virus evolution in mosquito vectors. Curr Opin Virol. 2016;21:132–8.

    Article  PubMed  Google Scholar 

  56. • Olson KE, Blair CD. Arbovirus-mosquito interactions: RNAi pathway. Current opinion in virology. 2015;15:119–26. This is a comprehensive and thorough analysis and description of the RNAi immune reponse to arbovirus infection in mosquitoes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Behura SK, Gomez-Machorro C, deBruyn B, Lovin DD, Harker BW, Romero-Severson J, et al. Influence of mosquito genotype on transcriptional response to dengue virus infection. Functional & integrative genomics 2014;14(3):581–589.

  58. Kingsolver MB, Huang Z, Hardy RW. Insect antiviral innate immunity: pathways, effectors, and connections. J Mol Biol. 2013;425(24):4921–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Goic B, Stapleford KA, Frangeul L, Doucet AJ, Gausson V, Blanc H, et al. Virus-derived DNA drives mosquito vector tolerance to arboviral infection. Nat Commun. 2016;7:12410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Salas-Benito JS, De Nova-Ocampo M. Viral interference and persistence in mosquito-borne flaviviruses. J Immunol Res. 2015;2015:873404.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ramirez JL, Dimopoulos G. The Toll immune signaling pathway control conserved anti-dengue defenses across diverse Ae. aegypti strains and against multiple dengue virus serotypes. Dev Comp Immunol. 2010;34(6):625–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Xi Z, Ramirez JL, Dimopoulos G. The Aedes aegypti toll pathway controls dengue virus infection. PLoS Pathog. 2008;4(7):e1000098.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Sim S, Dimopoulos G. Dengue virus inhibits immune responses in Aedes aegypti cells. PLoS One. 2010;5(5):e10678.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Souza-Neto JA, Sim S, Dimopoulos G. An evolutionary conserved function of the JAK-STAT pathway in anti-dengue defense. Proc Natl Acad Sci U S A. 2009;106(42):17841–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. • Troupin A, Londono-Renteria B, Conway MJ, Cloherty E, Jameson S, Higgs S, et al. A novel mosquito ubiquitin targets viral envelope protein for degradation and reduces virion production during dengue virus infection. Biochimica et biophysica acta. 2016;1860(9):1898–909. This study demonstrates for the first time that a mosquito ubiquitin plays an antiviral role during dengue virus infection of Aedes

    Article  CAS  PubMed  Google Scholar 

  66. •• Paradkar PN, Duchemin JB, Voysey R, Walker PJ. Dicer-2-dependent activation of Culex Vago occurs via the TRAF-Rel2 signaling pathway. PLoS Negl Trop Dis. 2014;8(4):e2823. This is an elegant study outlining how a mosquito immune pathway mimics the mammalian interferon pathway during the antiviral response.

  67. Chen-Chih Wu R, Shaio MF, Cho WL. A p38 MAP kinase regulates the expression of the Aedes aegypti defensin gene in mosquito cells. Insect Mol Biol. 2007;16(4):389–99.

    Article  CAS  PubMed  Google Scholar 

  68. Blair CD. Mosquito RNAi is the major innate immune pathway controlling arbovirus infection and transmission. Future Microbiol. 2011;6(3):265–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sanchez-Vargas I, Scott JC, Poole-Smith BK, Franz AW, Barbosa-Solomieu V, Wilusz J, et al. Dengue virus type 2 infections of Aedes aegypti are modulated by the mosquito’s RNA interference pathway. PLoS Pathog. 2009;5(2):e1000299.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Baron OL, Ursic-Bedoya RJ, Lowenberger CA, Ocampo CB. Differential gene expression from midguts of refractory and susceptible lines of the mosquito, Aedes aegypti, infected with Dengue-2 virus. J Insect Sci. 2010;10:41.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Smartt CT, Richards SL, Anderson SL, Erickson JS. West Nile virus infection alters midgut gene expression in Culex pipiens quinquefasciatus Say (Diptera: Culicidae). Am J Trop Med Hyg. 2009;81(2):258–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Bonizzoni M, Dunn WA, Campbell CL, Olson KE, Marinotti O, James AA. Complex modulation of the Aedes aegypti transcriptome in response to dengue virus infection. PLoS One. 2012;7(11):e50512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. David JP, Coissac E, Melodelima C, Poupardin R, Riaz MA, Chandor-Proust A, et al. Transcriptome response to pollutants and insecticides in the dengue vector Aedes aegypti using next-generation sequencing technology. BMC Genomics. 2010;11:216.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Shin D, Civana A, Acevedo C, Smartt CT. Transcriptomics of differential vector competence: West Nile virus infection in two populations of Culex pipiens quinquefasciatus linked to ovary development. BMC Genomics. 2014;15:513.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Bartholomay LC, Waterhouse RM, Mayhew GF, Campbell CL, Michel K, Zou Z, et al. Pathogenomics of Culex quinquefasciatus and meta-analysis of infection responses to diverse pathogens. Science. 2010;330(6000):88–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Colpitts TM, Cox J, Vanlandingham DL, Feitosa FM, Cheng G, Kurscheid S, et al. Alterations in the Aedes aegypti transcriptome during infection with West Nile, dengue and yellow fever viruses. PLoS Pathog. 2011;7(9):e1002189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tsujimoto H, Hanley KA, Sundararajan A, Devitt NP, Schilkey FD, Hansen IA. Dengue virus serotype 2 infection alters midgut and carcass gene expression in the Asian tiger mosquito, Aedes albopictus. PLoS One. 2017;12(2):e0171345.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Zink SD, Van Slyke GA, Palumbo MJ, Kramer LD, Ciota AT. Exposure to West Nile virus increases bacterial diversity and immune gene expression in Culex pipiens. Viruses. 2015;7(10):5619–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Paradkar PN, Duchemin JB, Rodriguez-Andres J, Trinidad L, Walker PJ. Cullin4 is pro-viral during West Nile virus infection of Culex mosquitoes. PLoS Pathog. 2015;11(9):e1005143.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Thangamani S, Wikel SK. Differential expression of Aedes aegypti salivary transcriptome upon blood feeding. Parasit Vectors. 2009;2(1):34.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Girard YA, Mayhew GF, Fuchs JF, Li H, Schneider BS, McGee CE, et al. Transcriptome changes in Culex quinquefasciatus (Diptera: Culicidae) salivary glands during West Nile virus infection. J Med Entomol. 2010;47(3):421–35.

    Article  CAS  PubMed  Google Scholar 

  82. Calvo E, Sanchez-Vargas I, Favreau AJ, Barbian KD, Pham VM, Olson KE, et al. An insight into the sialotranscriptome of the West Nile mosquito vector, Culex tarsalis. BMC genomics. 2010;11:51.

    Article  PubMed  PubMed Central  Google Scholar 

  83. • Chisenhall DM, Christofferson RC, McCracken MK, Johnson AM, Londono-Renteria B, Mores CN. Infection with dengue-2 virus alters proteins in naturally expectorated saliva of Aedes aegypti mosquitoes. Parasit Vectors. 2014;7:252. This study demonstrates how infection with an arbovirus can alter the composition of the saliva to improve feeding and affect viral transmission.

  84. Skalsky RL, Vanlandingham DL, Scholle F, Higgs S, Cullen BR. Identification of microRNAs expressed in two mosquito vectors, Aedes albopictus and Culex quinquefasciatus. BMC genomics. 2010;11:119.

    Article  PubMed  PubMed Central  Google Scholar 

  85. •• Etebari K, Osei-Amo S, Blomberg SP, Asgari S. Dengue virus infection alters post-transcriptional modification of microRNAs in the mosquito vector Aedes aegypti. Sci Rep. 2015;5:15968. This study provides solid evidence that micro-RNA modification, and the presences of isomiRs, may be important for the dengue virus life cycle in the mosquito.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Liu Y, Zhou Y, Wu J, Zheng P, Li Y, Zheng X, et al. The expression profile of Aedes albopictus miRNAs is altered by dengue virus serotype-2 infection. Cell & bioscience. 2015;5:16.

    Article  Google Scholar 

  87. Zhou Y, Liu Y, Yan H, Li Y, Zhang H, Xu J, et al. miR-281, an abundant midgut-specific miRNA of the vector mosquito Aedes albopictus enhances dengue virus replication. Parasit Vectors. 2014;7:488.

  88. Yan H, Zhou Y, Liu Y, Deng Y, Chen X. miR-252 of the Asian tiger mosquito Aedes albopictus regulates dengue virus replication by suppressing the expression of the dengue virus envelope protein. J Med Virol. 2014;86(8):1428–36.

    Article  CAS  PubMed  Google Scholar 

  89. Dutra HL, Rocha MN, Dias FB, Mansur SB, Caragata EP, Moreira LA. Wolbachia blocks currently circulating Zika virus isolates in Brazilian Aedes aegypti mosquitoes. Cell Host Microbe. 2016;19(6):771–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, et al. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell. 2009;139(7):1268–78.

    Article  PubMed  Google Scholar 

  91. Hoffmann AA, Montgomery BL, Popovici J, Iturbe-Ormaetxe I, Johnson PH, Muzzi F, et al. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature. 1038;476(7361):454–457.

  92. Caragata EP, Dutra HL, Moreira LA. Inhibition of Zika virus by Wolbachia in Aedes aegypti. Microbial cell. 2016;3(7):293–5.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Aliota MT, Peinado SA, Velez ID, Osorio JE. The wMel strain of Wolbachia reduces transmission of Zika virus by Aedes aegypti. Sci Rep. 2016;6:28792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Pan X, Zhou G, Wu J, Bian G, Lu P, Raikhel AS, et al. Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti. Proc Natl Acad Sci U S A. 2012;109(1):E23–31.

    Article  PubMed  Google Scholar 

  95. Mousson L, Zouache K, Arias-Goeta C, Raquin V, Mavingui P, Failloux AB. The native Wolbachia symbionts limit transmission of dengue virus in Aedes albopictus. PLoS Negl Trop Dis. 2012;6(12):e1989.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Blagrove MS, Arias-Goeta C, Failloux AB, Sinkins SP. Wolbachia strain wMel induces cytoplasmic incompatibility and blocks dengue transmission in Aedes albopictus. Proc Natl Acad Sci U S A. 2012;109(1):255–60.

    Article  CAS  PubMed  Google Scholar 

  97. Glaser RL, Meola MA. The native Wolbachia endosymbionts of Drosophila melanogaster and Culex quinquefasciatus increase host resistance to West Nile virus infection. PLoS One. 2010;5(8):e11977.

    Article  PubMed  PubMed Central  Google Scholar 

  98. • Dodson BL, Hughes GL, Paul O, Matacchiero AC, Kramer LD, Rasgon JL. Wolbachia enhances West Nile virus (WNV) infection in the mosquito Culex tarsalis. PLoS Negl Trop Dis. 2014;8(7):e2965. This study indicates that Wolbachia has the potential to enhance arbovirus infection in the mosquito.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Aguiar M, Stollenwerk N, Halstead SB. The risks behind Dengvaxia recommendation. Lancet Infect Dis. 2016;16(8):882–3.

    Article  PubMed  Google Scholar 

  100. Morens DM, Halstead SB. Measurement of antibody-dependent infection enhancement of four dengue virus serotypes by monoclonal and polyclonal antibodies. J Gen Virol 1990;71 (Pt 12):2909–2914.

  101. Burke DS, Kliks S. Antibody-dependent enhancement in dengue virus infections. J Infect Dis 2006;193(4):601–603; author reply 3–4.

  102. Halstead SB, Rojanasuphot S, Sangkawibha N. Original antigenic sin in dengue. Am J Trop Med Hyg. 1983;32(1):154–6.

    Article  CAS  PubMed  Google Scholar 

  103. Dejnirattisai W, Supasa P, Wongwiwat W, Rouvinski A, Barba-Spaeth G, Duangchinda T, et al. Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with zika virus. Nat Immunol. 2016;17(9):1102–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Barba-Spaeth G, Dejnirattisai W, Rouvinski A, Vaney MC, Medits I, Sharma A, et al. Structural basis of potent Zika-dengue virus antibody cross-neutralization. Nature. 2016;536(7614):48–53.

    Article  CAS  PubMed  Google Scholar 

  105. • Londono-Renteria B, Troupin A, Colpitts TM. Arbovirosis and potential transmission blocking vaccines. Parasit Vectors. 2016;9(1):516. This is a review and discussion of the potential for an arboviral transmission-blocking vaccines

    Article  PubMed  PubMed Central  Google Scholar 

  106. Theisen M, Jore MM, Sauerwein R. Towards clinical development of a Pfs48/45-based transmission blocking malaria vaccine. Expert review of vaccines. 2017;16(4):329–36.

    Article  CAS  PubMed  Google Scholar 

  107. Nunes JK, Woods C, Carter T, Raphael T, Morin MJ, Diallo D, et al. Development of a transmission-blocking malaria vaccine: progress, challenges, and the path forward. Vaccine. 2014;32(43):5531–9.

    Article  PubMed  Google Scholar 

  108. Cheng G, Cox J, Wang P, Krishnan MN, Dai J, Qian F, et al. A C-type lectin collaborates with a CD45 phosphatase homolog to facilitate West Nile virus infection of mosquitoes. Cell. 2010;142(5):714–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Liu Y, Zhang F, Liu J, Xiao X, Zhang S, Qin C, et al. Transmission-blocking antibodies against mosquito C-type lectins for dengue prevention. PLoS Pathog. 2014;10(2):e1003931.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Londono-Renteria B, Troupin A, Conway MJ, Vesely D, Ledizet M, Roundy CM, et al. Dengue virus infection of Aedes aegypti requires a putative cysteine rich venom protein. PLoS Pathog. 2015;11(10):e1005202.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tonya M. Colpitts.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Virology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Troupin, A., Grippin, C. & Colpitts, T.M. Flavivirus Pathogenesis in the Mosquito Transmission Vector. Curr Clin Micro Rpt 4, 115–123 (2017). https://doi.org/10.1007/s40588-017-0066-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40588-017-0066-6

Keywords

Navigation