Skip to main content

Advertisement

Log in

Q fever – An Update

  • Bacteriology (N Borel, Section Editor)
  • Published:
Current Clinical Microbiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Coxiella burnetii is the etiological agent of the worldwide distributed zoonosis Q fever. This review gives a comprehensive overview about the etiological agent and epidemiology of C. burnetii. Moreover, the role of arthropod vectors in transmission of C. burnetii is discussed.

Recent Findings

Detailed information is provided about current diagnostics and vaccination and importantly the most recent developments for improving the respective measures in animals. Immunoproteomic approaches are presented aimed to replace currently used whole cell antigen with well-defined and reproducible epitopes.

Summary

Ruminants are considered as the main reservoir for human infections. The often subclinical infection in animals and suboptimal sensitivity of diagnostics hamper the identification of infected animals, while effectiveness of the current vaccine is questionable. New strategies based on advanced diagnostics and vaccines in animals will have the potential to prevent Q fever spreading and transmission to humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Derrick EH. “Q” fever, new fever entity: clinical features, diagnosis and laboratory investigation. Med J Aust. 1937;2:281–99.

    Google Scholar 

  2. Burnet FM, Freeman M. Experimental studies on the virus of “Q” fever. Med J Aust. 1937;2:299–305.

    Google Scholar 

  3. Davis GE, Cox HR. A filter-passing infectious agent isolated from ticks. I. Isolation from Dermacentor andersoni, reactions in animals, and filtration experiments. Public Health Rep. 1938;53(52):2259–67.

    Article  Google Scholar 

  4. Arricau Bouvery N, Souriau A, Lechopier P, et al. Experimental Coxiella burnetii infection in pregnant goats: excretion routes. Vet Res. 2003;34(4):423–33. doi:10.1051/vetres:2003017.

    Article  PubMed  Google Scholar 

  5. Rousset E, Berri M, Durand B, et al. Coxiella burnetii shedding routes and antibody response after outbreaks of Q fever-induced abortion in dairy goat herds. Appl Environ Microbiol. 2009;75(2):428–33. doi:10.1128/AEM.00690-08.

    Article  CAS  PubMed  Google Scholar 

  6. Rodolakis A, Berri M, Hechard C, et al. Comparison of Coxiella burnetii shedding in milk of dairy bovine, caprine, and ovine herds. J Dairy Sci. 2007;90(12):5352–60. doi:10.3168/jds.2006-815.

    Article  CAS  PubMed  Google Scholar 

  7. Kampschreur LM, Delsing CE, Groenwold RH, et al. Chronic Q fever in the Netherlands 5 years after the start of the Q fever epidemic: results from the Dutch chronic Q fever database. J Clin Microbiol. 2014;52(5):1637–43. doi:10.1128/JCM.03221-13.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Schimmer B, de Lange MM, Hautvast JL, et al. Coxiella burnetii seroprevalence and risk factors on commercial sheep farms in The Netherlands. Vet Rec. 2014;175(1):17. doi:10.1136/vr.102155.

    Article  CAS  PubMed  Google Scholar 

  9. Schimmer B, Schotten N, van Engelen E, et al. Coxiella burnetii seroprevalence and risk for humans on dairy cattle farms, the Netherlands, 2010-2011. Emerg Infect Dis. 2014;20(3):417–25. doi:10.3201/eid2003.131111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kampschreur LM, Wegdam-Blans MC, Thijsen SF, et al. Acute Q fever related in-hospital mortality in the Netherlands. Neth J Med. 2010;68(12):408–13.

    CAS  PubMed  Google Scholar 

  11. • Boden K, Brasche S, Straube E, et al. Specific risk factors for contracting Q fever: lessons from the outbreak Jena. Int J Hyg Environ Health. 2014;217(1):110–5. doi:10.1016/j.ijheh.2013.04.004. Boden et al. (2014) defines risk factors for transmission of C. burnetii to humans during an local outbreak.

    Article  PubMed  Google Scholar 

  12. • de Rooij MM, Borlee F, Smit LA, et al. Detection of Coxiella burnetii in ambient air after a large q fever outbreak. PLoS One. 2016;11(3):e0151281. Rooij et al. (2014) provides evidence of environmental contamination and transmission of C. burnetii over long distances.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Bottcher J, Vossen A, Janowetz B, et al. Insights into the dynamics of endemic Coxiella burnetii infection in cattle by application of phase-specific ELISAs in an infected dairy herd. Vet Microbiol. 2011;151(3-4):291–300. doi:10.1016/j.vetmic.2011.03.007.

    Article  PubMed  Google Scholar 

  14. •• O'Neill TJ, Sargeant JM, Poljak Z. A systematic review and meta-analysis of phase I inactivated vaccines to reduce shedding of Coxiella burnetii from sheep and goats from routes of public health importance. Zoonoses Public Health. 2014;61(8):519–33. doi:10.1111/zph.12086. O’Neil et al. (2014) provide a systematic review on the effectiveness of the current used vaccine in small ruminants. The demonstrated lack of effectiveness of vaccination in sheep emphasizes the need for a deeper analysis of the current vaccination strategy.

    PubMed  Google Scholar 

  15. Arricau-Bouvery N, Souriau A, Bodier C, et al. Effect of vaccination with phase I and phase II Coxiella burnetii vaccines in pregnant goats. Vaccine. 2005;23(35):4392–402. doi:10.1016/j.vaccine.2005.04.010.

    Article  CAS  PubMed  Google Scholar 

  16. Weisburg WG, Dobson ME, Samuel JE, et al. Phylogenetic diversity of the Rickettsiae. J Bacteriol. 1989;171(8):4202–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tan CK, Owens L. Infectivity, transmission and 16S rRNA sequencing of a rickettsia, Coxiella cheraxi sp. nov., from the freshwater crayfish Cherax quadricarinatus. Dis Aquat Organ. 2000;41(2):115-22. doi:10.3354/dao041115.

  18. Angelakis E, Mediannikov O, Jos SL, et al. Candidatus Coxiella massiliensis Infection. Emerg Infect Dis. 2016;22(2):285–8. doi:10.3201/eid2202.150106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Thompson HA, Suhan ML. Genetics of Coxiella burnetii. FEMS Microbiol Lett. 1996;145(2):139–46.

    Article  CAS  PubMed  Google Scholar 

  20. Ning Z, Yu SR, Quan YG, et al. Molecular characterization of cloned variants of Coxiella burnetii isolated in China. Acta Virol. 1992;36(2):173–83.

    CAS  PubMed  Google Scholar 

  21. Beare PA, Unsworth N, Andoh M, et al. Comparative genomics reveal extensive transposon-mediated genomic plasticity and diversity among potential effector proteins within the genus Coxiella. Infect Immun. 2009;77(2):642–56. doi:10.1128/IAI.01141-08.

    Article  CAS  PubMed  Google Scholar 

  22. Seshadri R, Paulsen IT, Eisen JA, et al. Complete genome sequence of the Q-fever pathogen Coxiella burnetii. Proc Natl Acad Sci U S A. 2003;100(9):5455–60. doi:10.1073/pnas.0931379100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Toft C, Andersson SG. Evolutionary microbial genomics: insights into bacterial host adaptation. Nat Rev Genet. 2010;11(7):465–75. doi:10.1038/nrg2798.

    Article  CAS  PubMed  Google Scholar 

  24. Raghavan R, Hicks LD, Minnick MF. Toxic introns and parasitic intein in Coxiella burnetii: legacies of a promiscuous past. J Bacteriol. 2008;190(17):5934–43. doi:10.1128/JB.00602-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. van Schaik EJ, Samuel JE. Phylogenetic diversity, virulence and comparative genomics. Adv Exp Med Biol. 2012;984:13–38. doi:10.1007/978-94-007-4315-1_2.

    Article  PubMed  CAS  Google Scholar 

  26. Klee SR, Tyczka J, Ellerbrok H, et al. Highly sensitive real-time PCR for specific detection and quantification of Coxiella burnetii. BMC Microbiol. 2006;6:2. doi:10.1186/1471-2180-6-2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Heinzen R, Stiegler GL, Whiting LL, et al. Use of pulsed field gel electrophoresis to differentiate Coxiella burnetii strains. Ann N Y Acad Sci. 1990;590:504–13.

    Article  CAS  PubMed  Google Scholar 

  28. Hendrix LR, Samuel JE, Mallavia LP. Differentiation of Coxiella burnetii isolates by analysis of restriction-endonuclease-digested DNA separated by SDS-PAGE. J Gen Microbiol. 1991;137(2):269–76.

    Article  CAS  PubMed  Google Scholar 

  29. Russell-Lodrigue KE, Andoh M, Poels MW, Shive HR, Weeks BR, Zhang GQ, et al. Coxiella burnetii isolates cause genogroup-specific virulence in mouse and guinea pig models of acute Q fever. Infect Immun. 2009;77(12):5640–50. doi:10.1128/IAI.00851-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Svraka S, Toman R, Skultety L, et al. Establishment of a genotyping scheme for Coxiella burnetii. FEMS Microbiol Lett. 2006;254(2):268–74. doi:10.1111/j.1574-6968.2005.00036.x.

    Article  CAS  PubMed  Google Scholar 

  31. Arricau-Bouvery N, Hauck Y, Bejaoui A, et al. Molecular characterization of Coxiella burnetii isolates by infrequent restriction site-PCR and MLVA typing. BMC Microbiol. 2006;6:38. doi:10.1186/1471-2180-6-38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Glazunova O, Roux V, Freylikman O. S et al. Coxiella burnetii genotyping. Emerg Infect Dis. 2005;11(8):1211–7. doi:10.3201/eid1108.041354.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Huijsmans CJ, Schellekens JJ, Wever PC, et al. Single-nucleotide-polymorphism genotyping of Coxiella burnetii during a Q fever outbreak in The Netherlands. Appl Environ Microbiol. 2011;77(6):2051–7. doi:10.1128/AEM.02293-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. van Schaik EJ, Chen C, Mertens K, et al. Molecular pathogenesis of the obligate intracellular bacterium Coxiella burnetii. Nat Rev Microbiol. 2013;11(8):561–73. doi:10.1038/nrmicro3049nrmicro3049.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Voth DE, Heinzen RA. Lounging in a lysosome: the intracellular lifestyle of Coxiella burnetii. Cell Microbiol. 2007;9(4):829–40. doi:10.1111/j.1462-5822.2007.00901.x.

    Article  CAS  PubMed  Google Scholar 

  36. Howe D, Shannon JG, Winfree S, et al. Coxiella burnetii phase I and II variants replicate with similar kinetics in degradative phagolysosome-like compartments of human macrophages. Infect Immun. 2010;78(8):3465–74. doi:10.1128/IAI.00406-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Howe D, Melnicakova J, Barak I, et al. Fusogenicity of the Coxiella burnetii parasitophorous vacuole. Ann N Y Acad Sci. 2003;990:556–62.

    Article  PubMed  Google Scholar 

  38. Voth DE, Howe D, Heinzen RA. Coxiella burnetii inhibits apoptosis in human THP-1 cells and monkey primary alveolar macrophages. Infect Immun. 2007;75(9):4263–71. doi:10.1128/IAI.00594-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Coleman SA, Fischer ER, Howe D, et al. Temporal analysis of Coxiella burnetii morphological differentiation. J Bacteriol. 2004;186(21):7344–52. doi:10.1128/JB.186.21.7344-7352.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hackstadt T, Williams JC. Biochemical stratagem for obligate parasitism of eukaryotic cells by Coxiella burnetii. Proc Natl Acad Sci U S A. 1981;78(5):3240–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hackstadt T, Williams JC. pH dependence of the Coxiella burnetii glutamate transport system. J Bacteriol. 1983;154(2):598–603.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Hackstadt T. Estimation of the cytoplasmic pH of Coxiella burnetii and effect of substrate oxidation on proton motive force. J Bacteriol. 1983;154(2):591–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Sandoz KM, Popham DL, Beare PA, et al. Transcriptional profiling of Coxiella burnetii reveals extensive cell wall remodeling in the small cell variant developmental form. PLoS One. 2016;11(2), e0149957. doi:10.1371/journal.pone.0149957.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. McCaul TF, Williams JC. Developmental cycle of Coxiella burnetii: structure and morphogenesis of vegetative and sporogenic differentiations. J Bacteriol. 1981;147(3):1063–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ftacek P, Skultety L, Toman R. Phase variation of Coxiella burnetii strain Priscilla: influence of this phenomenon on biochemical features of its lipopolysaccharide. J Endotoxin Res. 2000;6(5):369–76.

    Article  CAS  PubMed  Google Scholar 

  46. Hotta A, Zhang GQ, Andoh M, et al. Use of monoclonal antibodies for analyses of Coxiella burnetii major antigens. J Vet Med Sci/Jap Soc Vet Sci. 2004;66(10):1289–91.

    Article  CAS  Google Scholar 

  47. Hotta A, Kawamura M, To H, et al. Phase variation analysis of Coxiella burnetii during serial passage in cell culture by use of monoclonal antibodies. Infect Immun. 2002;70(8):4747–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Andoh M, Zhang G, Russell-Lodrigue KE, et al. T cells are essential for bacterial clearance, and gamma interferon, tumor necrosis factor alpha, and B cells are crucial for disease development in Coxiella burnetii infection in mice. Infect Immun. 2007;75(7):3245–55. doi:10.1128/IAI.01767-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Moos A, Hackstadt T. Comparative virulence of intra- and interstrain lipopolysaccharide variants of Coxiella burnetii in the guinea pig model. Infect Immun. 1987;55(5):1144–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Islam A, Lockhart M, Stenos J, et al. The attenuated nine mile phase II clone 4/RSA439 strain of Coxiella burnetii is highly virulent for severe combined immunodeficient (SCID) mice. Am J Trop Med Hyg. 2013;89(4):800–3. doi:10.4269/ajtmh.12-0653.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Andoh M, Russell-Lodrigue KE, Zhang G, et al. Comparative virulence of phase I and II Coxiella burnetii in immunodeficient mice. Ann N Y Acad Sci. 2005;1063:167–70. doi:10.1196/annals.1355.026.

    Article  PubMed  Google Scholar 

  52. Narasaki CT, Mertens K, Samuel JE. Characterization of the GDP-D-mannose biosynthesis pathway in Coxiella burnetii: the initial steps for GDP-beta-D-virenose biosynthesis. PLoS One. 2011;6(10), e25514. doi:10.1371/journal.pone.0025514PONE-D-11-01666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Flores-Ramirez G, Janecek S, Miernyk JA, et al. In silico biosynthesis of virenose, a methylated deoxy-sugar unique to Coxiella burnetii lipopolysaccharide. Proteome Sci. 2012;10(1):67. doi:10.1186/1477-5956-10-671477-5956-10-67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Toman R, Skultety L, Ihnatko R. Coxiella burnetii glycomics and proteomics--tools for linking structure to function. Ann N Y Acad Sci. 2009;1166:67–78. doi:10.1111/j.1749-6632.2009.04512.x.

    Article  CAS  PubMed  Google Scholar 

  55. Vadovic P, Fuleova A, Ihnatko R, et al. Structural studies of lipid A from a lipopolysaccharide of the Coxiella burnetii isolate RSA 514 (Crazy). Clin Microbiol Infect. 2009;15 Suppl 2:198–9. doi:10.1111/j.1469-0691.2008.02224.x.

    Article  CAS  PubMed  Google Scholar 

  56. Schramek S, Radziejewskalebrecht J, Mayer H. 3-C-Branched aldoses in lipopolysaccharide of phase I Coxiella burnetii and their role as immunodominant factors. Eur J Biochem. 1985;148(3):455–61. doi:10.1111/j.1432-1033.1985.tb08861.x.

    Article  CAS  PubMed  Google Scholar 

  57. Toman R, Skultety L, Ftacek P, et al. NMR study of virenose and dihydrohydroxystreptose isolated from Coxiella burnetii phase I lipopolysaccharide. Carbohydr Res. 1998;306(1-2):291–6. doi:10.1016/s0008-6215(97)10037-4.

    Article  CAS  PubMed  Google Scholar 

  58. Toman R, Garidel P, Andra J, et al. Physicochemical characterization of the endotoxins from Coxiella burnetii strain Priscilla in relation to their bioactivities. BMC Biochem. 2004;5:1. doi:10.1186/1471-2091-5-1.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zamboni DS, Campos MA, Torrecilhas AC, et al. Stimulation of toll-like receptor 2 by Coxiella burnetii is required for macrophage production of pro-inflammatory cytokines and resistance to infection. J Biol Chem. 2004;279(52):54405–15. doi:10.1074/jbc.M410340200.

    Article  CAS  PubMed  Google Scholar 

  60. Shannon JG, Howe D, Heinzen RA. Virulent Coxiella burnetii does not activate human dendritic cells: role of lipopolysaccharide as a shielding molecule. Proc Natl Acad Sci U S A. 2005;102(24):8722–7. doi:10.1073/pnas.0501863102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hackstadt T, Peacock MG, Hitchcock PJ, et al. Lipopolysaccharide variation in Coxiella burnetii: intrastrain heterogeneity in structure and antigenicity. Infect Immun. 1985;48(2):359–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Hackstadt T. Antigenic variation in the phase I lipopolysaccharide of Coxiella burnetii isolates. Infect Immun. 1986;52(1):337–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Vishwanath S, Hackstadt T. Lipopolysaccharide phase variation determines the complement-mediated serum susceptibility of Coxiella burnetii. Infect Immun. 1988;56(1):40–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Hackstadt T. Steric hindrance of antibody binding to surface proteins of Coxiella burnetii by phase I lipopolysaccharide. Infect Immun. 1988;56(4):802–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Boumedine K, Rousset, E., Henning, K., et al. EFSA, Development of harmonised schemes for the monitoring and reporting of Q-fever in animals in the European Union. EFSA Supporting Publications 2010.

  66. Van den Brom R, van Engelen E, Roest HIJ, et al. Coxiella burnetii infections in sheep or goats: an opinionated review. Vet Microbiol. 2015;181(1-2):119–29. doi:10.1016/j.vetmic.2015.07.011.

    Article  PubMed  Google Scholar 

  67. Institut R-RK. Q-Fieber: Ausbruch in Jena (Q fever outbreak in Jena). ABiG Außergewöhnliche biologische Gefahren 2005.

  68. Infektionsbericht L-LB-W. Erhöhte Anzahl von Q-Fieber-Fällen (High number of Q fever infections). INFEKTIONSBERICHT Baden-Württemberg 2015.

  69. Friedrich-Loeffler-Institut. Tiergesundheitsjahresbericht. 2014.

  70. Bond KA, Vincent G, Wilks CR, et al. One Health approach to controlling a Q fever outbreak on an Australian goat farm. Epidemiol Infect. 2016;144(6):1129–41. doi:10.1017/s0950268815002368.

    Article  CAS  PubMed  Google Scholar 

  71. Psaroulaki A, Chochlakis D, Ioannou I, et al. Presence of Coxiella burnetii in fleas in Cyprus. Vector Borne Zoonotic Dis. 2014;14(9):685–7. doi:10.1089/vbz.2013.1399.

    Article  PubMed  Google Scholar 

  72. Reeves WK, Szumlas DE, Moriarity JR, et al. Louse-borne bacterial pathogens in lice (Phthiraptera) of rodents and cattle from Egypt. J Parasitol. 2006;92(2):313–8. doi:10.1645/GE-717R.1.

    Article  PubMed  Google Scholar 

  73. Chaisiri K, McGarry JW, Morand S, et al. Symbiosis in an overlooked microcosm: a systematic review of the bacterial flora of mites. Parasitology. 2015;142(9):1152–62. doi:10.1017/s0031182015000530.

    Article  PubMed  Google Scholar 

  74. Spyridaki I, Psaroulaki A, Loukaides F, et al. Isolation of Coxiella burnetii by a centrifugation shell-vial assay from ticks collected in Cyprus: detection by nested polymerase chain reaction (PCR) and by PCR-restriction fragment length polymorphism analyses. Am J Trop Med Hyg. 2002;66(1):86–90.

    CAS  PubMed  Google Scholar 

  75. Dubourg G, Socolovschi C, Del Giudice P, et al. Scalp eschar and neck lymphadenopathy after tick bite: an emerging syndrome with multiple causes. Eur J Clin Microbiol Infect Dis. 2014;33(8):1449–56. doi:10.1007/s10096-014-2090-2.

    Article  CAS  PubMed  Google Scholar 

  76. Bennett MD, Woolford L, Banazis MJ, et al. Coxiella burnetii in western barred bandicoots (Perameles bougainville) from Bernier and Dorre Islands in Western Australia. EcoHealth. 2011;8(4):519–24. doi:10.1007/s10393-011-0729-3.

    Article  PubMed  Google Scholar 

  77. Siroky P, Kubelova M, Modry D, et al. Tortoise tick Hyalomma aegyptium as long term carrier of Q fever agent Coxiella burnetii--evidence from experimental infection. Parasitol Res. 2010;107(6):1515–20. doi:10.1007/s00436-010-2037-1.

    Article  PubMed  Google Scholar 

  78. Kocianova E, Kovacova EI, Literak I. Comparison of virulence of Coxiella burnetii isolates from bovine milk and from ticks. Folia Parasitol. 2001;48(3):235–9.

    Article  CAS  PubMed  Google Scholar 

  79. Stanek G. Pandora's box: pathogens in Ixodes ricinus ticks in Central Europe. Wien Klin Wochenschr. 2009;121(21-22):673–83. doi:10.1007/s00508-009-1281-9.

    Article  PubMed  Google Scholar 

  80. Sting R, Breitling N, Oehme R, et al. The occurrence of Coxiella burnetii in sheep and ticks of the genus Dermacentor in Baden-Wuerttemberg. Dtsch Tierarztl Wochenschr. 2004;111(10):390–4.

    CAS  PubMed  Google Scholar 

  81. Sprong H, Tijsse-Klasen E, Langelaar M, De Bruin A, et al. Prevalence of Coxiella burnetii in ticks after a large outbreak of Q fever. Zoonoses Public Health. 2012;59(1):69–75. doi:10.1111/j.1863-2378.2011.01421.x.

    Article  CAS  PubMed  Google Scholar 

  82. Cooper AE. Identification of potential reservoirs of Q fever in Queensland, Australia. Townsville: James Cook University; 2011.

    Google Scholar 

  83. Gonzalez-Barrio D, Jado I, Fernandez-de-Mera IG, Del Rocio Fernandez-Santos M, et al. Genotypes of Coxiella burnetii in wildlife: disentangling the molecular epidemiology of a multi-host pathogen. Environ Microbiol Rep. 2016. doi:10.1111/1758-2229.12431.

    PubMed  Google Scholar 

  84. Zhong J. Coxiella-like endosymbionts. Adv Exp Med Biol. 2012;984:365–79. doi:10.1007/978-94-007-4315-1_18.

    Article  CAS  PubMed  Google Scholar 

  85. Smith TA, Driscoll T, Gillespie JJ, et al. Coxiella-like endosymbiont is a potential vitamin source for the Lone Star tick. Genome Biol Evol. 2015;7(3):831–8. doi:10.1093/gbe/evv016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. •• Duron O, Noel V, McCoy KD, et al. The Recent Evolution of a Maternally-Inherited Endosymbiont of Ticks Led to the Emergence of the Q Fever Pathogen, Coxiella burnetii. PLoS Pathog. 2015;11(5), e1004892. doi:10.1371/journal.ppat.1004892. Duron et al. (2015) present a comprehensive review questioning the paradigm of ticks as vectors for transmission of C. burnetii. This is especially of importance since the discovery of Coxiella-like bacteria and the lack of methods to differentiate these from C. burnetii.

  87. Duron O. The IS1111 insertion sequence used for detection of Coxiella burnetii is widespread in Coxiella-like endosymbionts of ticks. FEMS Microbiol Lett. 2015;362(17):fnv132. doi:10.1093/femsle/fnv132.

    Article  PubMed  Google Scholar 

  88. Pearson T, Cocking JH, Hornstra HM, et al. False detection of Coxiella burnetii-what is the risk? FEMS Microbiol Lett. 2016;363(10). doi:10.1093/femsle/fnw088.

  89. Roest HI, Bossers A, Rebel JM. Q fever diagnosis and control in domestic ruminants. Dev Biol. 2013;135:183–9. doi:10.1159/000188081.

    CAS  Google Scholar 

  90. Roest HJ, van Gelderen B, Dinkla A, et al. Q fever in pregnant goats: pathogenesis and excretion of Coxiella burnetii. PLoS One. 2012;7(11), e48949. doi:10.1371/journal.pone.0048949PONE-D-12-20240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Jung BY, Seo MG, Lee SH, et al. Molecular and serologic detection of Coxiella burnetii in native Korean goats (Capra hircus coreanae). Vet Microbiol. 2014;173(1-2):152–5. doi:10.1016/j.vetmic.2014.06.029.

    Article  PubMed  Google Scholar 

  92. Mares-Guia MA, Rozental T, Guterres A, et al. Molecular identification of the agent of Q fever - Coxiella burnetii - in domestic animals in State of Rio de Janeiro, Brazil. Rev Soc Bras Med Trop. 2014;47(2):231–4.

    Article  PubMed  Google Scholar 

  93. Brennan RE, Samuel JE. Evaluation of Coxiella burnetii antibiotic susceptibilities by real-time PCR assay. J Clin Microbiol. 2003;41(5):1869–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tilburg JJ, Melchers WJ, Pettersson AM, et al. Interlaboratory evaluation of different extraction and real-time PCR methods for detection of Coxiella burnetii DNA in serum. J Clin Microbiol. 2010;48(11):3923–7. doi:10.1128/JCM.01006-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Cox HR, Beli EJ. The cultivation of Rickettsia diaporica in tissue culture and in the tissue of developing chick embryo. Public Health Rep. 1939;54(49):2171–8.

    Article  Google Scholar 

  96. Arens M. Continuous multiplication of Coxiella burnetii through persisting infection in buffalo-green monkey (BGM) cell cultures. Zentralblatt fur Veterinarmedizin Reihe B: J Vet Med B. 1983;30(2):109–16.

    CAS  Google Scholar 

  97. Henning K, Sting R. Isolation and cultivation of Coxiella burnetii in cell culture. Tierärztl Umsch. 2000;55:140–4.

    Google Scholar 

  98. Lukacova M, Kazar J, Gajdosova E, et al. Phase variation of lipopolysaccharide of Coxiella burnetii, strain Priscilla during chick embryo yolk sac passaging. FEMS Microbiol Lett. 1993;113(3):285–9.

    Article  CAS  PubMed  Google Scholar 

  99. Samuel JE, Hendrix LR. Laboratory maintenance of Coxiella burnetii. Curr Protoc Microbiol. 2009;Chapter 6:Unit 6C 1. doi:10.1002/9780471729259.mc06c01s15.

  100. Mori M, Boarbi S, Michel P, et al. In vitro and in vivo infectious potential of coxiella burnetii: a study on Belgian livestock isolates. PLoS One. 2013;8(6), e67622. doi:10.1371/journal.pone.0067622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Omsland A, Beare PA, Hill J, et al. Isolation from animal tissue and genetic transformation of Coxiella burnetii are facilitated by an improved axenic growth medium. Appl Environ Microbiol. 2011;77(11):3720–5. doi:10.1128/AEM.02826-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Omsland A, Cockrell DC, Fischer ER, et al. Sustained axenic metabolic activity by the obligate intracellular bacterium Coxiella burnetii. J Bacteriol. 2008;190(9):3203–12. doi:10.1128/JB.01911-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sandoz KM, Beare PA, Cockrell DC, et al. A defined axenic medium allows complementation of arginine auxotrophy for genetic transformation of Coxiella burnetii. Appl Environ Microbiol. 2016. doi:10.1128/AEM.00261-16.

    Google Scholar 

  104. Kersh GJ, Oliver LD, Self JS, et al. Virulence of pathogenic Coxiella burnetii strains after growth in the absence of host cells. Vector Borne Zoonotic Dis. 2011;11(11):1433–8. doi:10.1089/vbz.2011.0670.

    Article  PubMed  Google Scholar 

  105. Kuley R, Smith HE, Frangoulidis D, et al. Cell-free propagation of Coxiella burnetii does not affect its relative virulence. PLoS One. 2015;10(3), e0121661. doi:10.1371/journal.pone.0121661.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Boden K, Wolf K, Hermann B, et al. First isolation of Coxiella burnetii from clinical material by cell-free medium (ACCM2). Eur J Clin Microbiol Infect Dis. 2015;34(5):1017–22. doi:10.1007/s10096-015-2321-1.

    Article  CAS  PubMed  Google Scholar 

  107. Horigan MW, Bell MM, Pollard TR, Savers AR, et al. Q fever diagnosis in domestic ruminants: comparison between complement fixation and commercial enzyme-linked immunosorbent assays. J Vet Diagn Investig. 2011;23(5):924–31. doi:10.1177/1040638711416971.

    Article  Google Scholar 

  108. Health EPoA, Welfare. Scientific Opinion on Q fever. EFSA J. 2010;8(5):n/a-n/a. doi:10.2903/j.efsa.2010.1595.

  109. Natale A, Bucci G, Capello K, et al. Old and new diagnostic approaches for Q fever diagnosis: correlation among serological (CFT, ELISA) and molecular analyses. Comp Immunol Microbiol Infect Dis. 2012;35(4):375–9. doi:10.1016/j.cimid.2012.03.002.

    Article  CAS  PubMed  Google Scholar 

  110. Emery MP, Ostlund EN, Schmitt BJ. Comparison of Q fever serology methods in cattle, goats, and sheep. J Vet Diagn Investig. 2012;24(2):379–82. doi:10.1177/1040638711434943.

    Article  Google Scholar 

  111. Paul S, Toft N, Agerholm JS, et al. Bayesian estimation of sensitivity and specificity of Coxiella burnetii antibody ELISA tests in bovine blood and milk. Prev Vet Med. 2013;109(3-4):258–63. doi:10.1016/j.prevetmed.2012.10.007.

    Article  PubMed  Google Scholar 

  112. Hogerwerf L, Koop G, Klinkenberg D, et al. Test and cull of high risk Coxiella burnetii infected pregnant dairy goats is not feasible due to poor test performance. Vet J. 2014;200(2):343–5. doi:10.1016/j.tvjl.2014.02.015.

    Article  PubMed  Google Scholar 

  113. Emery MP, Ostlund EN, Ait Ichou M, et al. Coxiella burnetii serology assays in goat abortion storm. J Vet Diagn Investig. 2014;26(1):141–5. doi:10.1177/1040638713517233.

    Article  Google Scholar 

  114. Barlow J, Rauch B, Welcome F, et al. Association between Coxiella burnetii shedding in milk and subclinical mastitis in dairy cattle. Vet Res. 2008;39(3):23. doi:10.1051/vetres:2007060.

    Article  PubMed  Google Scholar 

  115. Bauer AE, Hubbard KR, Johnson AJ, et al. A cross sectional study evaluating the prevalence of Coxiella burnetii, potential risk factors for infection, and agreement between diagnostic methods in goats in Indiana. Prev Vet Med. 2016;126:131–7. doi:10.1016/j.prevetmed.2016.01.026.

    Article  PubMed  Google Scholar 

  116. Niemczuk K, Szymanska-Czerwinska M, Smietanka K, et al. Comparison of diagnostic potential of serological, molecular and cell culture methods for detection of Q fever in ruminants. Vet Microbiol. 2014;171(1-2):147–52. doi:10.1016/j.vetmic.2014.03.015.

    Article  CAS  PubMed  Google Scholar 

  117. • Sting R, Molz K, Philipp W, et al. Quantitative real-time PCR and phase specific serology are mutually supportive in Q fever diagnostics in goats. Vet Microbiol. 2013;167(3-4):600–8. doi:10.1016/j.vetmic.2013.09.015. Sting et al. (2013) proved for goats that phase-specific serology before birth is suitable to predict possible pathogen excretion during parturition, which means a great benefit for reducing transmission risk.

    Article  CAS  PubMed  Google Scholar 

  118. Guatteo R, Beaudeau F, Joly A, et al. Coxiella burnetii shedding by dairy cows. Vet Res. 2007;38(6):849–60. doi:10.1051/vetres:2007038.

    Article  PubMed  Google Scholar 

  119. • Bottcher J, Frangoulidis D, Schumacher M, et al. The impact of Q fever-phase-specific milk serology for the diagnosis of puerperal and chronic milk shedding of C. burnetii in dairy cows. Berl Munch Tierarztl Wochenschr. 2013;126(9-10):427–35. Bottcher et al. (2013) revealed importance of phase-specific ELISAs and showed for first time that these can be used as markers to detect chronic C. burnetii shedding in cattle. As shedding animals show no symptoms these findings are very important in prevention of Q fever spreading.

  120. Vigil A, Chen C, Jain A, et al. Profiling the humoral immune response of acute and chronic Q fever by protein microarray. MCP. 2011;10(10):M110.006304. doi:10.1074/mcp.M110.006304.

    PubMed  PubMed Central  Google Scholar 

  121. Xiong X, Wang X, Wen B, et al. Potential serodiagnostic markers for Q fever identified in Coxiella burnetii by immunoproteomic and protein microarray approaches. BMC Microbiol. 2012;12:35. doi:10.1186/1471-2180-12-35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wang X, Xiong X, Graves S, et al. Protein array of Coxiella burnetii probed with Q fever sera. Sci China Life Sci. 2013;56(5):453–9. doi:10.1007/s11427-013-4472-6.

    Article  PubMed  CAS  Google Scholar 

  123. Jiao J, Xiong X, Qi Y, et al. Serological characterization of surface-exposed proteins of Coxiella burnetii. Microbiology. 2014;160(Pt 12):2718–31. doi:10.1099/mic.0.082131-0.

    Article  CAS  PubMed  Google Scholar 

  124. •• Rahman KS, Chowdhury EU, Poudel A, et al. Defining species-specific immunodominant B cell epitopes for molecular serology of Chlamydia species. Clin Vaccine Immunol. 2015;22(5):539–52. doi:10.1128/cvi.00102-15. Rahman et al. (2015) present a comprehensive study that combines new bioinformatic and experimental methods to identify highly specific B cell epitopes for differential detection of nine Chlamydia species and even serovars. They provide a good basis for efficient discovery of pathogen targets and thus for the development of improved diagnostics and vaccines.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Taurel AF, Guatteo R, Lehebel A, Jolly A, et al. Vaccination using phase I vaccine is effective to control Coxiella burnetii shedding in infected dairy cattle herds. Comp Immunol Microb. 2014;37(1):1–9. doi:10.1016/j.cimid.2013.10.002.

    Article  Google Scholar 

  126. Hogerwerf L, van den Brom R, Roest HI, et al. Reduction of Coxiella burnetii prevalence by vaccination of goats and sheep, The Netherlands. Emerg Infect Dis. 2011;17(3):379–86. doi:10.3201/eid1703.101157.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Rousset E, Durand B, Champion JL, et al. Efficiency of a phase 1 vaccine for the reduction of vaginal Coxiella burnetii shedding in a clinically affected goat herd. Clin Microbiol Infect. 2009;15 Suppl 2:188–9. doi:10.1111/j.1469-0691.2008.02220.x.

    Article  CAS  PubMed  Google Scholar 

  128. Guatteo R, Seegers H, Joly A, et al. Prevention of Coxiella burnetii shedding in infected dairy herds using a phase I C. burnetii inactivated vaccine. Vaccine. 2008;26(34):4320–8. doi:10.1016/j.vaccine.2008.06.023.

    Article  CAS  PubMed  Google Scholar 

  129. de Cremoux R, Rousset E, Touratier A, et al. Assessment of vaccination by a phase I Coxiella burnetii-inactivated vaccine in goat herds in clinical Q fever situation. FEMS Immunol Med Microbiol. 2012;64(1):104–6. doi:10.1111/j.1574-695X.2011.00892.x.

    Article  PubMed  CAS  Google Scholar 

  130. Williams JC, Hoover TA, Waag DM, et al. Antigenic structure of Coxiella burnetii. A comparison of lipopolysaccharide and protein antigens as vaccines against Q fever. Ann N Y Acad Sci. 1990;590:370–80.

    Article  CAS  PubMed  Google Scholar 

  131. Zhang G, Russell-Lodrigue KE, Andoh M, et al. Mechanisms of vaccine-induced protective immunity against Coxiella burnetii infection in BALB/c mice. J Immunol. 2007;179(12):8372–80.

    Article  CAS  PubMed  Google Scholar 

  132. •• Peng Y, Zhang Y, Mitchell WJ, et al. Development of a lipopolysaccharide-targeted peptide mimic vaccine against Q fever. J Immunol. 2012;189(10):4909–20. doi:10.4049/jimmunol.1201622. Peng et al. (2012) had an excellent idea with screening a peptide library for LPS mimicking epitopes. From this inventive approach they could identify a protective peptide that is very promising for generation of a subunit vaccine.

    Article  CAS  PubMed  Google Scholar 

  133. Chen C, Dow C, Wang P, et al. Identification of CD4+ T cell epitopes in C. burnetii antigens targeted by antibody responses. PLoS One. 2011;6(3):e17712. doi:10.1371/journal.pone.0017712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Xiong X, Qi Y, Jiao J, et al. Exploratory study on Th1 epitope-induced protective immunity against Coxiella burnetii infection. PLoS One. 2014;9(1), e87206. doi:10.1371/journal.pone.0087206.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Katja Mertens or Claudia Gerlach.

Ethics declarations

Conflict of Interest

Katja Mertens, Claudia Gerlach, Heinrich Neubauer and Klaus Henning declare they have no competing interests.

Human and Animal Rights and Informed Consent

This article contains no studies with human or animal subjects performed by the authors.

Additional information

This article is part of the Topical Collection on Bacteriology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mertens, K., Gerlach, C., Neubauer, H. et al. Q fever – An Update. Curr Clin Micro Rpt 4, 61–70 (2017). https://doi.org/10.1007/s40588-017-0059-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40588-017-0059-5

Keywords

Navigation