Skip to main content

Advertisement

Log in

Environmental Exposures and Neuropsychiatric Disorders: What Role Does the Gut–Immune–Brain Axis Play?

  • Mechanisms of Toxicity (CJ Mattingly and A Planchart, Section Editors)
  • Published:
Current Environmental Health Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Evidence is growing that environmental exposures—including xenobiotics as well as microbes—play a role in the pathogenesis of many neuropsychiatric disorders. Underlying mechanisms are likely to be complex, involving the developmentally sensitive interplay of genetic/epigenetic, detoxification, and immune factors. Here, we review evidence supporting a role for environmental factors and disrupted gut–immune–brain axis function in some neuropsychiatric conditions.

Recent Findings

Studies suggesting the involvement of an altered microbiome in triggering CNS-directed autoimmunity and neuropsychiatric disturbances are presented as an intriguing example of the varied mechanisms by which environmentally induced gut–immune–brain axis dysfunction may contribute to adverse brain outcomes.

Summary

The gut–immune–brain axis is a burgeoning frontier for investigation of neuropsychiatric illness. Future translational research to define individual responses to exogenous exposures in terms of microbiome-dependent skew of the metabolome, immunity, and brain function may serve as a lens for illumination of pathways involved in the development of CNS disease and fuel discovery of novel interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Heinzen EL, Neale BM, Traynelis SF, Allen AS, Goldstein DB. The genetics of neuropsychiatric diseases: looking in and beyond the exome. Annu Rev Neurosci. 2015;38:47–68.

    Article  CAS  PubMed  Google Scholar 

  2. Dick DM, Riley B, Kendler KS. Nature and nurture in neuropsychiatric genetics: where do we stand? Dialogues Clin Neurosci. 2010;12(1):7–23.

    PubMed Central  PubMed  Google Scholar 

  3. Thompson L, Kemp J, Wilson P, Pritchett R, Minnis H, Toms-Whittle L, et al. What have birth cohort studies asked about genetic, pre- and perinatal exposures and child and adolescent onset mental health outcomes? A systematic review. Eur Child Adolesc Psychiatry. 2010;19(1):1–15.

    Article  PubMed  Google Scholar 

  4. Simanek AM, Meier HC. Association between prenatal exposure to maternal infection and offspring mood disorders: a review of the literature. Curr Probl Pediatr Adolesc Health Care. 2015;45(11):325–64.

    Article  PubMed  Google Scholar 

  5. Bonde JP. Psychosocial factors at work and risk of depression: a systematic review of the epidemiological evidence. Occup Environ Med. 2008;65(7):438–45.

    Article  CAS  PubMed  Google Scholar 

  6. Jaga K, Dharmani C. The interrelation between organophosphate toxicity and the epidemiology of depression and suicide. Rev Environ Health. 2007;22(1):57–73.

    Article  CAS  PubMed  Google Scholar 

  7. Triebig G, Barocka A, Erbguth F, Holl R, Lang C, Lehrl S, et al. Neurotoxicity of solvent mixtures in spray painters. II. Neurologic, psychiatric, psychological, and neuroradiologic findings. Int Arch Occup Environ Health. 1992;64(5):361–72.

    Article  CAS  PubMed  Google Scholar 

  8. Huang YC, Tsuang W. Health effects associated with faulty application of spray polyurethane foam in residential homes. Environ Res. 2014;134:295–300.

    Article  CAS  PubMed  Google Scholar 

  9. Kraneveld AD, de Theije CG, van Heesch F, Borre Y, de Kivit S, Olivier B, et al. The neuro-immune axis: prospect for novel treatments for mental disorders. Basic Clin Pharmacol Toxicol. 2014;114(1):128–36.

    Article  CAS  PubMed  Google Scholar 

  10. Sherwin E, Rea K, Dinan TG, Cryan JF. A gut (microbiome) feeling about the brain. Curr Opin Gastroenterol. 2016;32(2):96–102.

    Article  CAS  PubMed  Google Scholar 

  11. Yoo BB, Mazmanian SK. The enteric network: Interactions between the immune and nervous systems of the gut. Immunity. 2017;46(6):910–26.

    Article  CAS  PubMed  Google Scholar 

  12. Westfall S, Lomis N, Kahouli I, Dia SY, Singh SP, Prakash S. Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain axis. Cell Mol Life Sci. 2017;74(20):3769–87.

    Article  CAS  PubMed  Google Scholar 

  13. Schizophrenia Working Group of the Psychiatric Genomics C. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511(7510):421–7.

    Article  CAS  Google Scholar 

  14. Herbert M. R.. Clinical implications of environmental toxicology for children’s neurodevelopment in autism. Future Neurol. 2007;2:167–71.

    Article  Google Scholar 

  15. Herbert MR, Anderson MP. An expanding spectrum of autism models: from fixed developmental defects to reversible functional impairments. In: Zimmerman AW, editor. Autism. Current Clinical Neurology. Totowa, NJ: Humana Press; 2008. p. 429–463.

    Chapter  Google Scholar 

  16. Sandhu KV, Sherwin E, Schellekens H, Stanton C, Dinan TG, Cryan JF. Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry. Transl Res. 2017;179:223–44.

    Article  CAS  PubMed  Google Scholar 

  17. Stojanovic A, Martorell L, Montalvo I, Ortega L, Monseny R, Vilella E, et al. Increased serum interleukin-6 levels in early stages of psychosis: associations with at-risk mental states and the severity of psychotic symptoms. Psychoneuroendocrinology. 2014;41:23–32.

    Article  CAS  PubMed  Google Scholar 

  18. Falcone T, Carlton E, Lee C, Janigro M, Fazio V, Forcen FE, et al. Does systemic inflammation play a role in pediatric psychosis? Clin Schizophr Relat Psychoses. 2015;9(2):65–78B.

    Article  PubMed  Google Scholar 

  19. Upthegrove R, Manzanares-Teson N, Barnes NM. Cytokine function in medication-naive first episode psychosis: a systematic review and meta-analysis. Schizophr Res. 2014;155(1–3):101–8.

    Article  PubMed  Google Scholar 

  20. Potvin S, Stip E, Sepehry AA, Gendron A, Bah R, Kouassi E. Inflammatory cytokine alterations in schizophrenia: A systematic quantitative review. Biol Psychiatry. 2008;63(8):801–8.

    Article  CAS  PubMed  Google Scholar 

  21. Rosenblat JD, McIntyre RS. Bipolar disorder and inflammation. Psychiatr Clin N Am. 2016;39(1):125–37.

    Article  Google Scholar 

  22. Gill JM, Saligan L, Woods S, Page G. PTSD is associated with an excess of inflammatory immune activities. Perspect Psychiatr Care. 2009;45(4):262–77.

    Article  PubMed  Google Scholar 

  23. Baker DG, Ekhator NN, Kasckow JW, Hill KK, Zoumakis E, Dashevsky BA, et al. Plasma and cerebrospinal fluid interleukin-6 concentrations in posttraumatic stress disorder. Neuroimmunomodulation. 2001;9(4):209–17.

    Article  CAS  PubMed  Google Scholar 

  24. Akintunde ME, Rose M, Krakowiak P, Heuer L, Ashwood P, Hansen R, et al. Increased production of IL-17 in children with autism spectrum disorders and co-morbid asthma. J Neuroimmunol. 2015;286:33–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Brambilla F, Monteleone P, Maj M. Interleukin-1beta and tumor necrosis factor-alpha in children with major depressive disorder or dysthymia. J Affect Disord. 2004;78(3):273–7.

    Article  CAS  PubMed  Google Scholar 

  26. Goldstein BI, Lotrich F, Axelson DA, Gill MK, Hower H, Goldstein TR, et al. Inflammatory markers among adolescents and young adults with bipolar spectrum disorders. J Clin Psychiatry. 2015;76(11):1556–63.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Khandaker GM, Pearson RM, Zammit S, Lewis G, Jones PB. Association of serum interleukin 6 and C-reactive protein in childhood with depression and psychosis in young adult life: a population-based longitudinal study. JAMA Psychiatry. 2014;71(10):1121–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Hornig M, Bresnahan MA, Che X, Schultz AF, Ukaigwe JE, Eddy ML, et al. Prenatal fever and autism risk. Mol Psychiatry. 2017. https://doi.org/10.1038/mp.2017.119.

  29. Brown AS, Schaefer CA, Quesenberry CP Jr, Liu L, Babulas VP, Susser ES. Maternal exposure to toxoplasmosis and risk of schizophrenia in adult offspring. Am J Psychiatry. 2005;162(4):767–73.

    Article  PubMed  Google Scholar 

  30. Brown AS. Prenatal infection as a risk factor for schizophrenia. Schizophr Bull. 2006;32(2):200–2.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Brown AS, Hooton J, Schaefer CA, Zhang H, Petkova E, Babulas V, et al. Elevated maternal interleukin-8 levels and risk of schizophrenia in adult offspring. Am J Psychiatry. 2004;161(5):889–95.

    Article  PubMed  Google Scholar 

  32. Goldstein JM, Cherkerzian S, Seidman LJ, Donatelli JA, Remington AG, Tsuang MT, et al. Prenatal maternal immune disruption and sex-dependent risk for psychoses. Psychol Med. 2014;44(15):3249–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Parboosing R, Bao Y, Shen L, Schaefer CA, Brown AS. Gestational influenza and bipolar disorder in adult offspring. JAMA Psychiatry. 2013;70(7):677–85.

    Article  PubMed  Google Scholar 

  34. Zerbo O, Qian Y, Yoshida C, Grether JK, Van de Water J, Croen LA. Maternal infection during pregnancy and autism spectrum disorders. J Autism Dev Disord. 2015;45(12):4015–25.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Mahic M, Che X, Susser E, Levin B, Reichborn-Kjennerud T, Magnus P, et al. Epidemiological and serological investigation into the role of gestational maternal influenza virus infection and autism spectrum disorders. mSphere. 2017. https://doi.org/10.1128/mSphere.00159-17.

  36. Sun Y, Vestergaard M, Christensen J, Nahmias AJ, Olsen J. Prenatal exposure to maternal infections and epilepsy in childhood: a population-based cohort study. Pediatrics. 2008;121(5):e1100–7.

    Article  PubMed  Google Scholar 

  37. Ahlin K, Himmelmann K, Hagberg G, Kacerovsky M, Cobo T, Wennerholm UB, et al. Cerebral palsy and perinatal infection in children born at term. Obstet Gynecol. 2013;122(1):41–9.

    Article  PubMed  Google Scholar 

  38. Hornig M. The role of microbes and autoimmunity in the pathogenesis of neuropsychiatric illness. Curr Opin Rheumatol. 2013;25(4):488–795.

    Article  CAS  PubMed  Google Scholar 

  39. McCusker RH, Kelley KW. Immune-neural connections: how the immune system’s response to infectious agents influences behavior. J Exp Biol. 2013;216(Pt 1):84–98.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Knuesel I, Chicha L, Britschgi M, Schobel SA, Bodmer M, Hellings JA, et al. Maternal immune activation and abnormal brain development across CNS disorders. Nat Rev Neurol. 2014;10(11):643–60.

    Article  CAS  PubMed  Google Scholar 

  41. Muller N, Riedel M, Gruber R, Ackenheil M, Schwarz MJ. The immune system and schizophrenia. An integrative view. Ann N Y Acad Sci. 2000;917:456–67.

    Article  CAS  PubMed  Google Scholar 

  42. Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155(7):1451–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Smith SE, Li J, Garbett K, Mirnics K, Patterson PH. Maternal immune activation alters fetal brain development through interleukin-6. J Neurosci. 2007;27(40):10695–702.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Samuelsson AM, Jennische E, Hansson HA, Holmang A. Prenatal exposure to interleukin-6 results in inflammatory neurodegeneration in hippocampus with NMDA/GABA(A) dysregulation and impaired spatial learning. Am J Phys Regul Integr Comp Phys. 2006;290(5):R1345–56.

    CAS  Google Scholar 

  45. Choi GB, Yim YS, Wong H, Kim S, Kim H, Kim SV, et al. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science. 2016;351(6276):933–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Finegold SM, Molitoris D, Song Y, Liu C, Vaisanen ML, Bolte E, et al. Gastrointestinal microflora studies in late-onset autism. Clin Infect Dis. 2002;35(Suppl 1):S6–S16.

    Article  PubMed  Google Scholar 

  47. Parracho HM, Bingham MO, Gibson GR, McCartney AL. Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J Med Microbiol. 2005;54(Pt 10):987–91.

    Article  PubMed  Google Scholar 

  48. Persico AM, Napolioni V. Urinary p-cresol in autism spectrum disorder. Neurotoxicol Teratol. 2013;36:82–90.

    Article  CAS  PubMed  Google Scholar 

  49. Williams BL, Hornig M, Parekh T, Lipkin WI. Application of novel PCR-based methods for detection, quantitation, and phylogenetic characterization of Sutterella species in intestinal biopsy samples from children with autism and gastrointestinal disturbances. mBio. 2012. https://doi.org/10.1128/mBio.00261-11.

  50. Wang L, Christophersen CT, Sorich MJ, Gerber JP, Angley MT, Conlon MA. Increased abundance of Sutterella spp. and Ruminococcus torques in feces of children with autism spectrum disorder. Mol Autism. 2013;4(1):42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Finegold SM. Desulfovibrio species are potentially important in regressive autism. Med Hypotheses. 2011;77(2):270–4.

    Article  PubMed  Google Scholar 

  52. Evans SJ, Bassis CM, Hein R, Assari S, Flowers SA, Kelly MB, et al. The gut microbiome composition associates with bipolar disorder and illness severity. J Psychiatr Res. 2017;87:23–9.

    Article  PubMed  Google Scholar 

  53. Schwarz E, Maukonen J, Hyytiainen T, Kieseppa T, Oresic M, Sabunciyan S, et al. Analysis of microbiota in first episode psychosis identifies preliminary associations with symptom severity and treatment response. Schizophr Res. 2017. https://doi.org/10.1016/j.schres.2017.04.017.

  54. Castro-Nallar E, Bendall ML, Perez-Losada M, Sabuncyan S, Severance EG, Dickerson FB, et al. Composition, taxonomy and functional diversity of the oropharynx microbiome in individuals with schizophrenia and controls. Peer J. 2015;3:e1140.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Yolken RH, Severance EG, Sabunciyan S, Gressitt KL, Chen O, Stallings C, et al. Metagenomic sequencing indicates that the oropharyngeal phageome of individuals with schizophrenia differs from that of controls. Schizophr Bull. 2015;41(5):1153–61.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Severance EG, Gressitt KL, Stallings CR, Katsafanas E, Schweinfurth LA, Savage CL, et al. Candida albicans exposures, sex specificity and cognitive deficits in schizophrenia and bipolar disorder. NPJ Schizophr. 2016;2:16018.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Aizawa E, Tsuji H, Asahara T, Takahashi T, Teraishi T, Yoshida S, et al. Possible association of Bifidobacterium and Lactobacillus in the gut microbiota of patients with major depressive disorder. J Affect Disord. 2016;202:254–7.

    Article  PubMed  Google Scholar 

  58. Jiang H, Ling Z, Zhang Y, Mao H, Ma Z, Yin Y, et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun. 2015;48:186–94.

    Article  PubMed  Google Scholar 

  59. Slyepchenko A, Maes M, Jacka FN, Kohler CA, Barichello T, McIntyre RS, et al. Gut microbiota, bacterial translocation, and interactions with diet: pathophysiological links between major depressive disorder and non-communicable medical comorbidities. Psychother Psychosom. 2017;86(1):31–46.

    Article  PubMed  Google Scholar 

  60. Giloteaux L, Goodrich JK, Walters WA, Levine SM, Ley RE, Hanson MR. Reduced diversity and altered composition of the gut microbiome in individuals with myalgic encephalomyelitis/chronic fatigue syndrome. Microbiome. 2016;4(1):30.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Nagy-Szakal D, Williams BL, Mishra N, Che X, Lee B, Bateman L, et al. Fecal metagenomic profiles in subgroups of patients with myalgic encephalomyelitis/chronic fatigue syndrome. Microbiome. 2017;5(1):44.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Shukla SK, Cook D, Meyer J, Vernon SD, Le T, Clevidence D, et al. Changes in gut and plasma microbiome following exercise challenge in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). PLoS One. 2015;10(12):e0145453.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Morris G, Berk M, Carvalho AF, Caso JR, Sanz Y, Maes M. The role of microbiota and intestinal permeability in the pathophysiology of autoimmune and neuroimmune processes with an emphasis on inflammatory bowel disease type 1 diabetes and chronic fatigue syndrome. Curr Pharm Des. 2016;22(40):6058–75.

    Article  CAS  PubMed  Google Scholar 

  64. Partty A, Kalliomaki M, Wacklin P, Salminen S, Isolauri E. A possible link between early probiotic intervention and the risk of neuropsychiatric disorders later in childhood: a randomized trial. Pediatr Res. 2015;77(6):823–8.

    Article  PubMed  Google Scholar 

  65. Tsai MC, Lin HK, Lin CH, Fu LS. Prevalence of attention deficit/hyperactivity disorder in pediatric allergic rhinitis: a nationwide population-based study. Allergy Asthma Proc. 2011;32(6):41–6.

    Article  PubMed  Google Scholar 

  66. Meldrum SJ, D'Vaz N, Dunstan JA, Mori TA, Hird K, Simmer K, et al. Allergic disease in the first year of life is associated with differences in subsequent neurodevelopment and behaviour. Early Hum Dev. 2012;88(7):567–73.

    Article  PubMed  Google Scholar 

  67. Shelton KH, Collishaw S, Rice FJ, Harold GT, Thapar A. Using a genetically informative design to examine the relationship between breastfeeding and childhood conduct problems. Eur Child Adolesc Psychiatry. 2011;20(11–12):571–9.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Dickerson FB, Stallings C, Origoni A, Katsafanas E, Savage CL, Schweinfurth LA, et al. Effect of probiotic supplementation on schizophrenia symptoms and association with gastrointestinal functioning: a randomized, placebo-controlled trial. Prim Care Companion CNS Disord. 2014. https://doi.org/10.4088/PCC.13m01579.

  69. Severance EG, Gressitt KL, Stallings CR, Katsafanas E, Schweinfurth LA, Savage CLG, et al. Probiotic normalization of Candida albicans in schizophrenia: a randomized, placebo-controlled, longitudinal pilot study. Brain Behav Immun. 2017;62:41–5.

    Article  PubMed  Google Scholar 

  70. Huang R, Wang K, Hu J. Effect of probiotics on depression: a systematic review and meta-analysis of randomized controlled trials. Nutrients. 2016. https://doi.org/10.3390/nu8080483.

  71. Ait-Belgnaoui A, Durand H, Cartier C, Chaumaz G, Eutamene H, Ferrier L, et al. Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology. 2012;37(11):1885–95.

    Article  CAS  PubMed  Google Scholar 

  72. ThyagaRajan S, Priyanka HP. Bidirectional communication between the neuroendocrine system and the immune system: relevance to health and diseases. Ann Neurosci. 2012;19(1):40–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Franco R, Pacheco R, Lluis C, Ahern GP, O'Connell PJ. The emergence of neurotransmitters as immune modulators. Trends Immunol. 2007;28(9):400–7.

    Article  CAS  PubMed  Google Scholar 

  74. •• Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci. 2015;9:392. This is an integral review exploring fundamental key concepts of the gut-immune-brain axis.

    PubMed Central  PubMed  Google Scholar 

  75. Borre YE, O'Keeffe GW, Clarke G, Stanton C, Dinan TG, Cryan JF. Microbiota and neurodevelopmental windows: implications for brain disorders. Trends Mol Med. 2014;20(9):509–18.

    Article  PubMed  Google Scholar 

  76. Satokari R, Gronroos T, Laitinen K, Salminen S, Isolauri E. Bifidobacterium and lactobacillus DNA in the human placenta. Lett Appl Microbiol. 2009;48(1):8–12.

    Article  CAS  PubMed  Google Scholar 

  77. Prince AL, Chu DM, Seferovic MD, Antony KM, Ma J, Aagaard KM. The perinatal microbiome and pregnancy: moving beyond the vaginal microbiome. Cold Spring Harbor Perspect Med. 2015. https://doi.org/10.1101/cshperspect.a023051.

  78. Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. The placenta harbors a unique microbiome. Sci Transl Med. 2014;6(237):237ra65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Collado MC, Rautava S, Aakko J, Isolauri E, Salminen S. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci Rep. 2016;6:23129.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Abreu MT. Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat Rev Immunol. 2010;10(2):131–44.

    Article  CAS  PubMed  Google Scholar 

  81. Engel AL, Holt GE, Lu H. The pharmacokinetics of toll-like receptor agonists and the impact on the immune system. Expert Rev Clin Pharmacol. 2011;4(2):275–89.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Barajon I, Serrao G, Arnaboldi F, Opizzi E, Ripamonti G, Balsari A, et al. Toll-like receptors 3, 4, and 7 are expressed in the enteric nervous system and dorsal root ganglia. J Histochem Cytochem. 2009;57(11):1013–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Krenkel O, Mossanen JC, Tacke F. Immune mechanisms in acetaminophen-induced acute liver failure. Hepatobiliary Surg Nutr. 2014;3(6):331–43.

    PubMed Central  PubMed  Google Scholar 

  84. Cai B, Wang M, Zhu X, Xu J, Zheng W, Zhang Y, et al. The fab fragment of a humanized anti-toll like receptor 4 (TLR4) monoclonal antibody reduces the lipopolysaccharide response via TLR4 in mouse macrophage. Int J Mol Sci. 2015;16(10):25502–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Maes M, Kubera M, Leunis JC. The gut-brain barrier in major depression: intestinal mucosal dysfunction with an increased translocation of LPS from gram negative enterobacteria (leaky gut) plays a role in the inflammatory pathophysiology of depression. Neuroendocrinol Lett. 2008;29(1):117–24.

    PubMed  Google Scholar 

  86. Maes M, Coucke F, Leunis JC. Normalization of the increased translocation of endotoxin from gram negative enterobacteria (leaky gut) is accompanied by a remission of chronic fatigue syndrome. Neuroendocrinol Lett. 2007;28(6):739–44.

    CAS  PubMed  Google Scholar 

  87. Severance EG, Gressitt KL, Stallings CR, Origoni AE, Khushalani S, Leweke FM, et al. Discordant patterns of bacterial translocation markers and implications for innate immune imbalances in schizophrenia. Schizophr Res. 2013;148(1–3):130–7.

    Article  PubMed Central  PubMed  Google Scholar 

  88. Zhan X, Stamova B, Jin LW, DeCarli C, Phinney B, Sharp FR. Gram-negative bacterial molecules associate with Alzheimer disease pathology. Neurology. 2016;87(22):2324–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Zhao Y, Cong L, Jaber V, Lukiw WJ. Microbiome-derived lipopolysaccharide enriched in the perinuclear region of Alzheimer’s disease brain. Front Immunol. 2017;8:1064.

    Article  PubMed Central  PubMed  Google Scholar 

  90. Hasegawa S, Goto S, Tsuji H, Okuno T, Asahara T, Nomoto K, et al. Intestinal Dysbiosis and lowered serum lipopolysaccharide-binding protein in Parkinson’s disease. PLoS One. 2015;10(11):e0142164.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Bercik P, Park AJ, Sinclair D, Khoshdel A, Lu J, Huang X, et al. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol Motil. 2011;23(12):1132–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Isolauri E, Majamaa H, Arvola T, Rantala I, Virtanen E, Arvilommi H. Lactobacillus casei strain GG reverses increased intestinal permeability induced by cow milk in suckling rats. Gastroenterology. 1993;105(6):1643–50.

    Article  CAS  PubMed  Google Scholar 

  93. Hummel S, Veltman K, Cichon C, Sonnenborn U, Schmidt MA. Differential targeting of the E-cadherin/beta-catenin complex by gram-positive probiotic lactobacilli improves epithelial barrier function. Appl Environ Microbiol. 2012;78(4):1140–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, et al. Ingestion of lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A. 2011;108(38):16050–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Morris G, Berk M, Carvalho A, Caso JR, Sanz Y, Walder K, et al. The role of the microbial metabolites including tryptophan catabolites and short chain fatty acids in the pathophysiology of immune-inflammatory and neuroimmune disease. Mol Neurobiol. 2017;54(6):4432–51.

    Article  CAS  PubMed  Google Scholar 

  96. Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu XN, et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol. 2004;558(Pt 1):263–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Mudd AT, Berding K, Wang M, Donovan SM, Dilger RN. Serum cortisol mediates the relationship between fecal Ruminococcus and brain N-acetylaspartate in the young pig. Gut Microbes. 2017:1–12.

  98. Aoki Y, Kasai K, Yamasue H. Age-related change in brain metabolite abnormalities in autism: a meta-analysis of proton magnetic resonance spectroscopy studies. Transl Psychiatry. 2012;2:e69.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Maqsood R, Stone TW. The gut-brain axis, BDNF, NMDA and CNS disorders. Neurochem Res. 2016;41(11):2819–35.

    Article  CAS  PubMed  Google Scholar 

  100. Varatharaj A, Galea I. The blood-brain barrier in systemic inflammation. Brain Behav Immun. 2017;60:1–12.

    Article  CAS  PubMed  Google Scholar 

  101. Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Toth M, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med. 2014;6(263):263ra158.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  102. Dileepan T, Smith ED, Knowland D, Hsu M, Platt M, Bittner-Eddy P, et al. Group a streptococcus intranasal infection promotes CNS infiltration by streptococcal-specific Th17 cells. J Clin Invest. 2016;126(1):303–17.

    Article  PubMed  Google Scholar 

  103. Yaddanapudi K, Hornig M, Serge R, De Miranda J, Baghban A, Villar G, et al. Passive transfer of streptococcus-induced antibodies reproduces behavioral disturbances in a mouse model of pediatric autoimmune neuropsychiatric disorders associated with streptococcal infection. Mol Psychiatry. 2010;15(7):712–26.

    Article  CAS  PubMed  Google Scholar 

  104. Domenici E, Wille DR, Tozzi F, Prokopenko I, Miller S, McKeown A, et al. Plasma protein biomarkers for depression and schizophrenia by multi analyte profiling of case-control collections. PLoS One. 2010;5(2):e9166.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Yamazaki Y, Kanekiyo T. Blood-brain barrier dysfunction and the pathogenesis of Alzheimer’s disease. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18091965.

  106. Walsh MT, Ryan M, Hillmann A, Condren R, Kenny D, Dinan T, et al. Elevated expression of integrin alpha(IIb) beta(IIIa) in drug-naive, first-episode schizophrenic patients. Biol Psychiatry. 2002;52(9):874–9.

    Article  CAS  PubMed  Google Scholar 

  107. Ye L, Sun Z, Xie L, Liu S, Ju G, Shi J, et al. Further study of a genetic association between the CLDN5 locus and schizophrenia. Schizophr Res. 2005;75(1):139–41.

    Article  PubMed  Google Scholar 

  108. Sun ZY, Wei J, Xie L, Shen Y, Liu SZ, Ju GZ, et al. The CLDN5 locus may be involved in the vulnerability to schizophrenia. Eur Psychiatry. 2004;19(6):354–7.

    Article  PubMed  Google Scholar 

  109. Schumberg K, Polyakova M, Steiner J, Schroeter ML. Serum S100B is related to illness duration and clinical symptoms in schizophrenia-a meta-regression analysis. Front Cell Neurosci. 2016;10:46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. Fiorentino M, Sapone A, Senger S, Camhi SS, Kadzielski SM, Buie TM, et al. Blood-brain barrier and intestinal epithelial barrier alterations in autism spectrum disorders. Mol Autism. 2016;7:49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Chassaing B, Vijay-Kumar M, Gewirtz AT. How diet can impact gut microbiota to promote or endanger health. Curr Opin Gastroenterol. 2017;33(6):417–21.

    Article  PubMed  Google Scholar 

  112. Selhub EM, Logan AC, Bested AC. Fermented foods, microbiota, and mental health: ancient practice meets nutritional psychiatry. J Physiol Anthropol. 2014;33:2.

    Article  PubMed Central  PubMed  Google Scholar 

  113. Tillisch K, Labus J, Kilpatrick L, Jiang Z, Stains J, Ebrat B, et al. Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology. 2013;144(7):1394–401. 401 e1–4

    Article  CAS  PubMed  Google Scholar 

  114. •• Koppel N, Maini Rekdal V, Balskus EP. Chemical transformation of xenobiotics by the human gut microbiota. Science. 2017. https://doi.org/10.1126/science.aag2770. This is an excellent review that details the relationship and biochemistry between xenobiotics and the metabolism of gut microbiota.

  115. McGeachy MJ, McSorley SJ. Microbial-induced Th17: superhero or supervillain? J Immunol. 2012;189(7):3285–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  116. Fetissov SO, Hallman J, Oreland L, Af Klinteberg B, Grenback E, Hulting AL, et al. Autoantibodies against alpha-MSH, ACTH, and LHRH in anorexia and bulimia nervosa patients. Proc Natl Acad Sci U S A. 2002;99(26):17155–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. •• Breton J, Legrand R, Akkermann K, Jarv A, Harro J, Dechelotte P, et al. Elevated plasma concentrations of bacterial ClpB protein in patients with eating disorders. Int J Eat Disord. 2016;49(8):805–8. A provocative study which highlights the potential role of the gut-immune-brain axis in eating disorders.

    Article  PubMed  Google Scholar 

  118. Fetissov SO, Dechelotte P. The putative role of neuropeptide autoantibodies in anorexia nervosa. Curr Opin Clin Nutr Metab Care. 2008;11(4):428–34.

    Article  CAS  PubMed  Google Scholar 

  119. Vincenzi B, O'Toole J, Lask B. PANDAS and anorexia nervosa--a spotters' guide: suggestions for medical assessment. Eur Eat Disord Rev. 2010;18(2):116–23.

    Article  PubMed  Google Scholar 

  120. Frankovich J, Thienemann M, Pearlstein J, Crable A, Brown K, Chang K. Multidisciplinary clinic dedicated to treating youth with pediatric acute-onset neuropsychiatric syndrome: presenting characteristics of the first 47 consecutive patients. J Child Adolesc Psychopharmacol. 2015;25(1):38–47.

    Article  PubMed Central  PubMed  Google Scholar 

  121. Orefici G, Cardona F, Cox CJ, Cunningham MW. Pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections (PANDAS). In: Ferretti JJ, Stevens DL, Fischetti VA, editors. Streptococcus pyogenes: Basic biology to clinical manifestations. Oklahoma City: University of Oklahoma Health Sciences Center; 2016. p. 1–43.

  122. Toufexis MD, Hommer R, Gerardi DM, Grant P, Rothschild L, D'Souza P, et al. Disordered eating and food restrictions in children with PANDAS/PANS. J Child Adolesc Psychopharmacol. 2015;25(1):48–56.

    Article  PubMed Central  PubMed  Google Scholar 

  123. Gable MS, Gavali S, Radner A, Tilley DH, Lee B, Dyner L, et al. Anti-NMDA receptor encephalitis: report of ten cases and comparison with viral encephalitis. Eur J Clin Microbiol Infect Dis. 2009;28(12):1421–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  124. Kayser MS, Dalmau J. Anti-NMDA receptor encephalitis, autoimmunity, and psychosis. Schizophr Res. 2016;176(1):36–40.

    Article  PubMed  Google Scholar 

  125. Pearlman DM, Najjar S. Meta-analysis of the association between N-methyl-d-aspartate receptor antibodies and schizophrenia, schizoaffective disorder, bipolar disorder, and major depressive disorder. Schizophr Res. 2014;157(1–3):249–58.

    Article  PubMed  Google Scholar 

  126. Pathmanandavel K, Starling J, Merheb V, Ramanathan S, Sinmaz N, Dale RC, et al. Antibodies to surface dopamine-2 receptor and N-methyl-D-aspartate receptor in the first episode of acute psychosis in children. Biol Psychiatry. 2015;77(6):537–47.

    Article  CAS  PubMed  Google Scholar 

  127. Tanaka S, Matsunaga H, Kimura M, Tatsumi K, Hidaka Y, Takano T, et al. Autoantibodies against four kinds of neurotransmitter receptors in psychiatric disorders. J Neuroimmunol. 2003;141(1–2):155–64.

    Article  CAS  PubMed  Google Scholar 

  128. Singh VK, Singh EA, Warren RP. Hyperserotoninemia and serotonin receptor antibodies in children with autism but not mental retardation. Biol Psychiatry. 1997;41(6):753–5.

    Article  CAS  PubMed  Google Scholar 

  129. Bashir S, Al-Ayadhi L. Endothelial antibody levels in the sera of children with autism spectrum disorders. J Chin Med Assoc. 2015;78(7):414–7.

    Article  PubMed  Google Scholar 

  130. Rout UK, Mungan NK, Dhossche DM. Presence of GAD65 autoantibodies in the serum of children with autism or ADHD. Eur Child Adolesc Psychiatry. 2012;21(3):141–7.

    Article  PubMed  Google Scholar 

  131. AlHakeem AS, Mekki MS, AlShahwan SM, Tabarki BM. Acute psychosis in children: do not miss immune-mediated causes. Neurosciences (Riyadh). 2016;21(3):252–5.

    Article  Google Scholar 

  132. Moura M, Silva-Dos-Santos A, Afonso J, Talina M. First-episode psychosis in a 15 year-old female with clinical presentation of anti-NMDA receptor encephalitis: a case report and review of the literature. BMC Res Notes. 2016;9:374.

    Article  PubMed Central  PubMed  Google Scholar 

  133. Dalmau J, Gleichman AJ, Hughes EG, Rossi JE, Peng X, Lai M, et al. Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol. 2008;7(12):1091–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  134. Swedo SE, Frankovich J, Murphy TK. Overview of treatment of pediatric acute-onset neuropsychiatric syndrome. J Child Adolesc Psychopharmacol. 2017;27(7):562–5.

    PubMed  Google Scholar 

  135. Severance EG, Alaedini A, Yang S, Halling M, Gressitt KL, Stallings CR, et al. Gastrointestinal inflammation and associated immune activation in schizophrenia. Schizophr Res. 2012;138(1):48–53.

    Article  PubMed Central  PubMed  Google Scholar 

  136. Cascella NG, Kryszak D, Bhatti B, Gregory P, Kelly DL, Mc Evoy JP, et al. Prevalence of celiac disease and gluten sensitivity in the United States clinical antipsychotic trials of intervention effectiveness study population. Schizophr Bull. 2011;37(1):94–100.

    Article  PubMed  Google Scholar 

  137. Jokanovic M, Kosanovic M. Neurotoxic effects in patients poisoned with organophosphorus pesticides. Environ Toxicol Pharmacol. 2010;29(3):195–201.

    Article  CAS  PubMed  Google Scholar 

  138. Perera FP, Wheelock K, Wang Y, Tang D, Margolis AE, Badia G, et al. Combined effects of prenatal exposure to polycyclic aromatic hydrocarbons and material hardship on child ADHD behavior problems. Environ Res. 2018;160:506–13.

    Article  CAS  PubMed  Google Scholar 

  139. Fluegge KR, Nishioka M, Wilkins JR 3rd. Effects of simultaneous prenatal exposures to organophosphate and synthetic pyrethroid insecticides on infant neurodevelopment at three months of age. J Environ Toxicol Public Health. 2016;1:60–73.

    PubMed Central  PubMed  Google Scholar 

  140. Chin-Chan M, Navarro-Yepes J, Quintanilla-Vega B. Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Front Cell Neurosci. 2015;9:124.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  141. Costa LG, Cole TB, Coburn J, Chang YC, Dao K, Roque P. Neurotoxicants are in the air: convergence of human, animal, and in vitro studies on the effects of air pollution on the brain. BioMed Research Int. 2014;2014:736385.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mady Hornig.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not include any new studies performed by any of the authors using human or animal subjects.

Additional information

This article is part of the Topical Collection on Mechanisms of Toxicity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delaney, S., Hornig, M. Environmental Exposures and Neuropsychiatric Disorders: What Role Does the Gut–Immune–Brain Axis Play?. Curr Envir Health Rpt 5, 158–169 (2018). https://doi.org/10.1007/s40572-018-0186-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40572-018-0186-z

Keywords

Navigation