Skip to main content

Advertisement

Log in

The Exposome Research Paradigm: an Opportunity to Understand the Environmental Basis for Human Health and Disease

  • Methods in Environmental Epidemiology (EF Schisterman and AZ Pollack, Section Editors)
  • Published:
Current Environmental Health Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This paper presents an overview of the exposome research paradigm with particular application to understanding human reproduction and development and its implications for health across a lifespan.

Recent Findings

The exposome research paradigm has generated considerable discussion about its feasibility and utility for delineating the impact of environmental exposures on human health. Early initiatives are underway, including smaller proof-of-principle studies and larger concerted efforts. Despite the notable challenges underlying the exposome paradigm, analytic techniques are being developed to handle its untargeted approach and correlated and multi-level or hierarchical data structures such initiatives generate, while considering multiple comparisons. The relatively short intervals for critical and sensitive windows of human reproduction and development seem well suited for exposome research and may revolutionize our understanding of later onset diseases.

Summary

Early initiatives suggest that the exposome paradigm is feasible, but its utility remains to be established with applications to population human health research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of Particular Interest, Published recently, Have Been Highlighted as: • Of Importance •• Of Major Importance

  1. Buck Louis GM, Yeung E, Sundaram R, Laughon SK, Zhang CL. The exposome—exciting opportunities for discoveries in reproductive and perinatal epidemiology. 2013:27:229–236. Doi: 10.1111/ppe.12040.

  2. Buck Louis GM, Sundaram R. Exposome: time for transformative research. Stat Med. 2012;31:2569–75. doi:10.1002/sim.5496.

    Article  PubMed  Google Scholar 

  3. Cui Y, Balshaw DM, Kwok RK, Thompson CL, Collman GW, Birnbaum LS. The exposome—embracing the complexity for discovery in environmental health. Environ Health Perspect. 2016;124(8):A137–40. doi:10.1289/EHP412.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lioy PJ, Rappaport SM. Exposure science and the exposome: an opportunity for coherence in the environmental health sciences. Environ Health Perspect. 2011;119:A466–7. doi:10.1289/EHP412.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wild CP. Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Biomark Prev. 2005;14:1847–50. doi:10.1289/ehp.1104387.

    Article  CAS  Google Scholar 

  6. Wild CP. The exposome: from concept to utility. Int J Epidemiol. 2012;41:24–32. doi:10.1158/1055-9965.EPI-05-0456.

    Article  PubMed  Google Scholar 

  7. Rappaport SM. Implications of the exposome for exposure science. J Expo Sci Environ Epidemiol. 2011;21(1):5–9. doi:10.1038/jes.2010.50.

    Article  CAS  PubMed  Google Scholar 

  8. Ho S-M, Johnson A, Tarapore P, Janakiram V, Zhang X, Leung Y-K. Environmental epigenetics and its implication on disease risk and health outcomes. ILAR J. 2012;53(3–4):289–305. doi:10.1093/ilar.53.3-4.289.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Miller GW, Jones DP. The nature or nurture: refining the definition of the exposome. Toxicol Sci. 2014;137:1–2. doi:10.1093/toxsci/kft251.

    Article  CAS  PubMed  Google Scholar 

  10. Miller GW. The exposome: a primer. Waltham: Academic Press, Elsevier, Inc.; 2014.

    Book  Google Scholar 

  11. Manrai AK, Cui Y, Bushel PR, Hall M, Karakitsios S, Mattingly C, et al. Informatics and data analytics to support exposome-based discovery for public health. Ann Rev Public Health 2016;38 (1).

  12. Gluckman PD, Hanson MA. Living with the past: evolution, development, and patterns of disease. Science. 2004;305:1733–6. doi:10.1126/science.1095292.

    Article  CAS  PubMed  Google Scholar 

  13. Painter RC, de Rooij SR, Bossuyt PM, Simmers TA, Osmond C, Barker DJ, et al. Early onset of coronary artery disease after prenatal exposure to the Dutch famine. Am J Clin Nutr. 2006;84:322–7.

    CAS  PubMed  Google Scholar 

  14. Ravnborg TL, Jensen TK, Andersson AM, Toppari J, Skakkebaek NE, Jørgensen N. Prenatal and adult exposures to smoking are associated with adverse effects on reproductive hormones, semen quality, final height and body mass index. Hum Reprod. 2011;26(5):1000–11. doi:10.1093/humrep/der011.

    Article  CAS  PubMed  Google Scholar 

  15. Obata Y, Kaneko-Ishino T, Koide T, Takai Y, Ueda T, Domeki I, et al. Disruption of primary imprinting during oocyte growth leads to modified expression of imprinted genes during embryogenesis. Development. 1998;125(8):1553–60.

    CAS  PubMed  Google Scholar 

  16. Owen CM, Segars JH. Imprinting disorders and assisted reproductive technology. Semin Reprod Med. 2009;27:417–28. doi:10.1055/s-0029-1237430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Skakkebaek NE, Rajpert-DeMeyts E, Main KM. Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Hum Reprod. 2001;16:972–8. doi:10.1093/humrep/16.5.972.

    Article  CAS  PubMed  Google Scholar 

  18. Buck Louis GM, Cooney MA, Peterson CM. The ovarian dysgenesis syndrome. J Dev Origins Health Dis. 2011;2(1):25–35. doi:10.1017/S2040174410000693.

    Article  Google Scholar 

  19. Trabert B, Zugna D, Richiardi L, McGlynn KA, Akre O. Congenital malformations and testicular germ cell tumors. Int J Cancer. 2013;133(8):1900–4. doi:10.1002/ijc.28207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mogensen JB, Kjaer SK, Mellemkjaer L, Jensen A. Endometriosis and risks for ovarian, endometrial and breast cancers: a nationwide cohort study. Gynecol Oncol. 2016; doi:10.1016/j.ygyno.2016.07.095.

    PubMed  Google Scholar 

  21. Eisenberg ML, Li S, Behr B, Cullen MR, Galusha D, Lamb DJ, et al. Semen quality, infertility and mortality in the USA. Hum Reprod. 2014;29(7):1567–74. doi:10.1093/humrep/deu106.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jensen TK, Jacobsen R, Christensen K, Nielsen NC, Bostofte E. Good semen quality and life expectancy: a cohort study of 43,277 men. Am J Epidemiol. 2009;170(5):559–65.

    Article  PubMed  Google Scholar 

  23. Buck Louis GM. Early origins of endometriosis: role of endocrine disrupting chemicals. In: Giudice L, Evers JLH, Healy D, editors. Endometriosis: science and practice. Oxford: Wiley-Blackwell Publishers; 2012. p. 153–63.

    Chapter  Google Scholar 

  24. Schuster M, Mackeen DA. Fetal endometriosis: a case report. Fertil Steril. 2015;103(1):160–2. doi:10.1016/j.fertnstert.2014.09.045.

    Article  PubMed  Google Scholar 

  25. Latham KE. Epigenetic modification and imprinting of the mammalian genome during development. Curr Top Dev Biol. 1999;43:1–49.

    Article  CAS  PubMed  Google Scholar 

  26. Wang X, Chen C, Wang L, Chen D, Guang W, French J. Conception, early pregnancy loss, and time to clinical pregnancy: a population-based prospective study. Fertil Steril. 2003;79:577–84. doi:10.1016/S0015-0282(02)04694-0.

    Article  PubMed  Google Scholar 

  27. Buck Louis GM, Sapra KJ, Schisterman EF, Lynch CD, Maisog JM, Grantz KL, et al. Lifestyle and pregnancy loss in a contemporary cohort of women recruited prior to conception, LIFE study. Fertil Steril. 2016;106(1):180–8. doi:10.1016/j.fertnstert.2016.03.009.

    Article  PubMed  Google Scholar 

  28. Jones GM, Cram DS, Song B, Kokkali G, Pantos K, Trounson AO. Novel strategy with potential to identify developmentally competent IVF blastocysts. Hum Reprod. 2008;23(8):1748–59. doi:10.1093/humrep/den123.

    Article  PubMed  Google Scholar 

  29. Katz-Jaffe M, Gardner DK. Can proteomics help to shape the future of human assisted conceptions? Reprod BioMed Online. 2008;17:497–501.

    Article  CAS  PubMed  Google Scholar 

  30. Scott R, Seli E, Miller K, Sakkas D, Scott K, Burns DH. Noninvasive metabolomics profiling of human embryo culture media using Raman spectroscopy predicts embryonic reproductive potential: a prospective blinded pilot study. Fertil Steril. 2008;90(1):77–83. doi:10.1016/j.fertnstert.2007.11.058.

    Article  PubMed  Google Scholar 

  31. Green BB, Kappil M, Lambertini L, Armstrong DA, Guerin DJ, Sharp AJ, et al. Expression of imprinted genes in placenta is associated with infant neurobehavioral development. Epigenetics. 2015;10(9):834–41. doi:10.1080/15592294.2015.1073880.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Green BB, Marsit CJ. Select prenatal environmental exposures and subsequent alterations of the gene-specific and repetitive element DNA methylation in fetal tissues. Curr Environ Health Rep. 2015;2(2):126–36. doi:10.1007/s40572-015-0045-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Patel CJ, Bhattacharya J, Butte AJ. An environment-wide association study (EWAS) on type 2 diabetes mellitus. PLoS One. 2010;5(5):e10746. doi:10.1371/journal.pone.0010746.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Keiding N, Louis TA. Perils and potentials of self-selected entry to epidemiological studies and surveys. J R Statist Soc A. 2016;179(Part. 2):1–28.

    Google Scholar 

  35. Brabham DC, Ribisl KM, Kirchner TR, Bernhardt JM. Crowdsourcing applications for public health. Am J Prev Med. 2014;46(2):179–87. doi:10.1016/j.amepre.2013.10.016.

    Article  PubMed  Google Scholar 

  36. Eagle N, Pentland A. Reality mining: sensing complex social systems. Personal Ubiquitous Comput. 2006;10(4):255–68. doi:10.1007/s00779-005-0046-3.

    Article  Google Scholar 

  37. Balshaw DM, Kwok RK. Innovative methods for improving measures of the personal environment. Am J Prev Med. 2012;42(5):558–9. doi:10.1016/j.amepre.2012.02.002.

    Article  PubMed  Google Scholar 

  38. • Nieuwenhuijsen MJ, Donaire-Gonzalez D, Foraster M, Martinez D, Cisneros A. Using personal sensors to assess the exposome and acute health effects. Int J Environ Res Public Health. 2014;11(8):7805–19. doi:10.3390/ijerph110807805. This study provides the reader with thoughtful perspectives about measuring exposures including new devices

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. • Patel C, Manrai AK. Development of exposome correlation globes to map out environment-wide associations. Pac Symp Biocomput. 2015;20:231–42. doi:10.1142/9789814644730_0023. This paper provides the reader with one of the first systematic maps of pairwise correlations between >250 exposures, displaying their dense interdependencies

    PubMed Central  Google Scholar 

  40. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57(1):289–300.

    Google Scholar 

  41. Patel CJ, Ioannidis JPA. Placing epidemiological results in the context of multiplicity and typical correlations of exposures. J Epidemiol Community Health. 2014;68(11):1096–100. doi:10.1136/jech-2014-204195.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Nyholt DR. A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. Am J Hum Genet. 2004;74(4):765–9. doi:10.1086/383251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Patel CJ, Cullen MR, Ioannidis JPA, Butte AJ. Systematic evaluation of environmental factors: persistent pollutants and nutrients correlated with serum lipid levels. Int J Epidemiol. 2012;41(3):828–43. doi:10.1093/ije/dys003.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Efron B. Large-scale inference. Cambridge: Cambridge University Press; 2010.

    Book  Google Scholar 

  45. Andra SS, Austin C, Arora M. The tooth exposome in children’s health research. Curr Opin Pediatr. 2016;28:221–7. doi:10.1097/MOP.0000000000000327.

    Article  PubMed  Google Scholar 

  46. Patel CJ, Rehkopf DH, Leppert JT, Bortz WM, Cullen MK, Chertow GM, et al. Systematic evaluation of environmental and behavioural factors associated with all-cause mortality in the United States National Health and Nutrition Examination Survey. Int J Epidemiol. 2014;42(6):1795–810. doi:10.1093/ije/dyt208.

    Article  Google Scholar 

  47. Patel CJ, Ioannidis JPA, Cullen MR, Rehkopf DH. Systematic assessment of the correlations of household income with infectious, biochemical, physiological, and environmental factors in the United States, 1999–2006. Am J Epidemiol. 2015;181(3):171–9. doi:10.1093/aje/kwu277.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Pearson TA, Manolio TA. How to interpret a genome-wide association study. JAMA. 2008;11:1335–44. doi:10.1001/jama.299.11.1335.

    Article  Google Scholar 

  49. McGinnis DP, Brownstein JS, Patel CJ. Environment-wide association study of blood pressure in the National Health and Nutrition Examination Survey (1999–2012). Sci Rep. 2006;30373 doi:10.1038/srep30373.

  50. Ioannidis JPA. Exposure-wide epidemiology: revisiting Bradford Hill. Stat Med. 2016;35(11):1749–62. doi:10.1002/sim.6825.

    Article  PubMed  Google Scholar 

  51. Patel CJ, Zhongkai Hu TY, Wen Q, Sung J, El-Sayed YY, Cohen H, et al. Investigation of maternal environmental exposures in association with self-reported preterm birth. Reprod Toxciol. 2013;45:1–29. doi:10.1016/j.reprotox.2013.12.005.

    Article  Google Scholar 

  52. Patel CJ, Ioannidis JPA. Studying the elusive environment in large scale. JAMA. 2014;311(21):2173–4. doi:10.1001/jama.2014.4129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chadeau-Hyam M, Campanella G, Jombart T, et al. Deciphering the complex: methodological overview of statistical models to derive OMICS-based biomarkers. Environ Mol Mutagen. 2013;54(7):542–57. doi:10.1002/em.21797.

    Article  CAS  PubMed  Google Scholar 

  54. Sun Z, Tao Y, Li S, Ferguson KK, Meeker JD, Park SK, et al. Statistical approaches for constructing health risk models with multiple pollutants and their interactions: possible choices and comparisons. Environ Health. 2013;12:85. doi:10.1186/1476-069X-12-85. http://www.ehjournal.net/content/12/1/85

    Article  PubMed  PubMed Central  Google Scholar 

  55. Go Y-M, Walker DI, Liang Y, Uppal K, Soltow QA, Tran V, et al. Reference standardization for mass spectrometry and high-resolution metabolomics applications to exposome research. Toxicol Sci. 2015;148(2):531–43. doi:10.1093/toxsci/kfv198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lenters V, Portengen L, Smit LAM, Jönsson BAG, Giwercman A, Rylander L, et al. Phthalates, perfluoroalkyl acids, metals and organochlorines and reproductive function: a multipollutant assessment in Greenlandic, Polish and Ukrainian men. Occup Environ Med. 2015;72(6):385–93. doi:10.1136/oemed-2014-102264.

    Article  PubMed  Google Scholar 

  57. Juarcz PD, Matthews-Juarez P, Hood DB, Im W, Levine RS, Kilbourne BJ, et al. The public health exposome: a population-based, exposure science approach to health disparities research. Int J Environ Res Public Health. 2014;11:12866–95. doi:10.3390/ijerph111212866.

    Article  Google Scholar 

  58. Buck AJ, Vena JE, McGuinness BM, Cooney MA, Louis GM. Communicating serum chemical concentrations to study participants: follow up survey. Environ Health. 2010;4:9–20. doi:10.1186/1476-069X-9-20.

    Google Scholar 

  59. •• Vrijheid M, Slama R, Robinson O, Chatzi L, Coen M, van den Hazel P, et al. The human early-life exposome (HELIX): project rationale and design. Environ Health Perspect. 2014;122:535–44. doi:10.1289/ehp.1307204. This study provides the reader with an example of how one might proceed in designing exposome research

    PubMed  PubMed Central  Google Scholar 

  60. HEALS. 2015. Health and Environment-wide Associations based on large population surveys. http://www.heals-eu.eu.

  61. EXPOSOMICS. 2015. http://www.exposomicsproject.eu/.

  62. HERCULES. 2015. Hercules Exposome Research Center. http://emoryhercules.com.

  63. NIEHS. 2016. Children’s Health Exposure Analysis Resource (CHEAR). http://www.niehs.nih.gov/research/supported/exposure/chear/.

  64. Oyana TJ, Matthews-Juarez P, Cormier SA, Xu X, Juarez PD, et al. Int J Environ Res Public Health. 2015;13(1) doi:10.3390/ijerph13010013.

  65. Kershenbaum AD, Langston MA, Levine RS, Saxton AM, Oyana TJ, Kilbourne BJ, et al. Exploration of preterm birth rates using the public health exposome database and computational analysis methods. Int J Environ Res Public Health. 2014;11(12):12346–66. doi:10.3390/ijerph111212346.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Steer CD, Bolton P, Golding J. Preconception and prenatal environmental factors associated with communication impairments in 9 year old children using an exposome-wide approach. PLoS One. 2015;10(3):e0118701. doi:10.1371/journal.pone.0118701.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Robinson O, Vrijheid M. The pregnancy exposome. Curr Environ Health Rep. 2015;2:204–13. doi:10.1007/s40572-015-0043-2.

    Article  CAS  PubMed  Google Scholar 

  68. Lewis RM, Demmelmair H, Gaillard R, Godfrey KM, Hauguel-de Mouzon S, et al. The placental exposome: placental determinants of fetal adiposity and postnatal body composition. Ann Nutr Metab. 2013;63:208–15. doi:10.1159/000355222.

    Article  CAS  PubMed  Google Scholar 

  69. Rappaport SM. Biomarkers intersect with the exposome. Biomarkers. 2012;17(6):483–9. doi:10.3109/1354750X.2012.691553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Petronis A. Epigenetics as a unifying principle in the aetiology of complex traits and diseases. Nature. 2010;465:721–7. doi:10.1038/nature09230.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development. Dr. Patel was funded by the National Institute of Environmental Health Sciences (1R00ES023504 and 1R21ES025052) and a gift from Agilent Technologies, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Germaine M. Buck Louis.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Methods in Environmental Epidemiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buck Louis, G.M., Smarr, M.M. & Patel, C.J. The Exposome Research Paradigm: an Opportunity to Understand the Environmental Basis for Human Health and Disease. Curr Envir Health Rpt 4, 89–98 (2017). https://doi.org/10.1007/s40572-017-0126-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40572-017-0126-3

Keywords

Navigation