Skip to main content

Advertisement

Log in

Turing Revisited: Decoding the microRNA Messages in Brain Extracellular Vesicles for Early Detection of Neurodevelopmental Disorders

Current Environmental Health Reports Aims and scope Submit manuscript

Abstract

The prevention of neurodevelopmental disorders (NDD) of prenatal origin suffers from the lack of objective tools for early detection of susceptible individuals and the long time lag, usually in years, between the neurotoxic exposure and the diagnosis of mental dysfunction. Human data on the effects of alcohol, lead, and mercury and experimental data from animals on developmental neurotoxins and their long-term behavioral effects have achieved a critical mass, leading to the concept of the Developmental Origin of Health and Disease (DOHaD). However, there is currently no way to evaluate the degree of brain damage early after birth. We propose that extracellular vesicles (EVs) and particularly exosomes, released by brain cells into the fetal blood, may offer us a non-invasive means of assessing brain damage by neurotoxins. We are inspired by the strategy applied by Alan Turing (a cryptanalyst working for the British government), who created a first computer to decrypt German intelligence communications during World War II. Given the growing evidence that microRNAs (miRNAs), which are among the molecules carried by EVs, are involved in cell-cell communication, we propose that decrypting messages from EVs can allow us to detect damage thus offering an opportunity to cure, reverse, or prevent the development of NDD. This review summarizes recent findings on miRNAs associated with selected environmental toxicants known to be involved in the pathophysiology of NDD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of outstanding importance

  1. Ratnaike R. Acute and chronic arsenic toxicity. Postgrad Med J. 2003;79(933):391–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sanders AP, Claus Henn B, Wright RO. Perinatal and childhood exposure to cadmium, manganese, and metal mixtures and effects on cognition and behavior: a review of recent literature. Curr Environ Health Rep. 2015;2(3):284–94.

    Article  CAS  PubMed  Google Scholar 

  3. Natarajan SK, Pachunka JM, Mott JL. Role of microRNAs in alcohol-induced multi-organ injury. Biomolecules. 2015;5(4):3309–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Froehlich TE, Anixt JS, Loe IM, et al. Update on environmental risk factors for attention-deficit/hyperactivity disorder. Curr Psych Rep. 2011;13(5):333–44.

    Article  Google Scholar 

  5. Doyle LR, Mattson SN. Neurobehavioral disorder associated with prenatal alcohol exposure (ND-PAE): review of evidence and guidelines for assessment. Curr Dev Disord Rep. 2015;2(3):175–86.

    Article  PubMed  Google Scholar 

  6. Grandjean P, Weihe P, Debes F, et al. Neurotoxicity from prenatal and postnatal exposure to methylmercury. Neurotoxicol Teratol. 2014;43:39–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Forns J, Fort M, Casas M, Cáceres A, Guxens M, Gascon M, et al. Exposure to metals during pregnancy and neuropsychological development at the age of 4 years. Neurotoxicology. 2014;40:16–22.

    Article  CAS  PubMed  Google Scholar 

  8. Vrijens K, Bollati V, Nawrot TS. MicroRNAs as potential signatures of environmental exposure or effect: a systematic review. Environ Health Perspect. 2015;123(5):399–411. This reviewed provides recent state of knowledge regarding the effects of environmental exposures on miRNAs expression. This suggested that miRNAs could be use as new biomarkers to detect environmental exposures-induced physiological changes.

  9. Hou L, Wang D, Baccarelli A. Environmental chemicals and microRNAs. Mutat Res. 2011;714(1–2):105–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang J, Li S, Li L, et al. Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinforma. 2015;13(1):17–24.

    Article  Google Scholar 

  11. Pritchard CC, Cheng HH, Tewari M. MicroRNA profiling: approaches and considerations. Nat Rev. 2012;13(5):358–69.

    Article  CAS  Google Scholar 

  12. Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15(8):509–24.

    Article  CAS  PubMed  Google Scholar 

  13. Stefani G, Slack FJ. Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol. 2008;9(3):219–30.

    Article  CAS  PubMed  Google Scholar 

  14. Simpson LJ, Ansel KM. MicroRNA regulation of lymphocyte tolerance and autoimmunity. J Clin Invest. 2015;125(6):2242–9.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Heegaard NHH, Carlsen AL, Skovgaard K, Heegaard PMH. Circulating extracellular microRNA in systemic autoimmunity. EXS. 2015;106:171–95.

    PubMed  Google Scholar 

  16. Lee H-M, Nguyen DT, Lu L-F. Progress and challenge of microRNA research in immunity. Front Genet. 2014;5:178.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Zhu S, Pan W, Qian Y. MicroRNA in immunity and autoimmunity. J Mol Med Berl Ger. 2013;91(9):1039–50.

    Article  CAS  Google Scholar 

  18. Arunachalam G, Upadhyay R, Ding H, Triggle CR. MicroRNA signature and cardiovascular dysfunction. J Cardiovasc Pharmacol. 2015;65(5):419–29.

    Article  CAS  PubMed  Google Scholar 

  19. Pfeifer P, Werner N, Jansen F. Role and function of microRNAs in extracellular vesicles in cardiovascular biology. BioMed Res Int. 2015;2015:161393.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Elia L, Condorelli G. RNA (epi)genetics in cardiovascular diseases. J Mol Cell Cardiol. 2015;89(Pt A):11–6.

    Article  CAS  PubMed  Google Scholar 

  21. Kadamkode V, Banerjee G. Micro RNA: an epigenetic regulator of type 2 diabetes. MicroRNA Shāriqah United Arab Emir. 2014;3(2):86–97.

    CAS  Google Scholar 

  22. Park S-Y, Jeong H-J, Yang W-M, et al. Implications of microRNAs in the pathogenesis of diabetes. Arch Pharm Res. 2013;36(2):154–66.

    Article  CAS  PubMed  Google Scholar 

  23. Cuellar TL, McManus MT. MicroRNAs and endocrine biology. J Endocrinol. 2005;187(3):327–32.

    Article  CAS  PubMed  Google Scholar 

  24. Lin S, Gregory RI. MicroRNA biogenesis pathways in cancer. Nat Rev Cancer. 2015;15(6):321–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Reddy KB. MicroRNA (miRNA) in cancer. Cancer Cell Int. 2015;15:38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Chung AC, Yu X, Lan HY. MicroRNA and nephropathy: emerging concepts. Int J Nephrol Renov Dis. 2013;6:169–79.

    CAS  Google Scholar 

  27. Kenny PJ. Epigenetics, microRNA, and addiction. Dialogues Clin Neurosci. 2014;16(3):335–44.

    PubMed  PubMed Central  Google Scholar 

  28. Santamaria X, Taylor H. MicroRNA and gynecological reproductive diseases. Fertil Steril. 2014;101(6):1545–51.

    Article  CAS  PubMed  Google Scholar 

  29. Tan L, Yu J-T, Tan L. Causes and consequences of MicroRNA dysregulation in neurodegenerative diseases. Mol Neurobiol. 2015;51(3):1249–62.

    Article  CAS  PubMed  Google Scholar 

  30. Wang C, Ji B, Cheng B, et al. Neuroprotection of microRNA in neurological disorders (review). Biomed Rep. 2014;2(5):611–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Henshall DC. MicroRNA and epilepsy: profiling, functions and potential clinical applications. Curr Opin Neurol. 2014;27(2):199–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Su W, Aloi MS, Garden GA. MicroRNAs mediating CNS inflammation: small regulators with powerful potential. Brain Behav Immun. 2015;52:1–8.

    Article  PubMed  CAS  Google Scholar 

  33. Xu B, Karayiorgou M, Gogos JA. MicroRNAs in psychiatric and neurodevelopmental disorders. Brain Res. 2010;1338:78–88.

    Article  CAS  PubMed  Google Scholar 

  34. Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2011;39(Database issue):D152–7.

    Article  CAS  PubMed  Google Scholar 

  35. Friedman RC, Farh KK-H, Burge CB, et al. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19(1):92–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54.

    Article  CAS  PubMed  Google Scholar 

  37. Yáñez-Mó M, Siljander PR-M, Andreu Z, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4:27066. This recent reviewed written by experts in the field of EVs provides a thorough description of EVs, about their properties, functions, and current or ongoing research for clinical utilization.

  38. Cocucci E, Meldolesi J. Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol. 2015;25(6):364–72.

    Article  CAS  PubMed  Google Scholar 

  39. Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–89.

    Article  CAS  PubMed  Google Scholar 

  40. Thery C. Exosomes: secreted vesicles and intercellular communications. F1000 Biol Rep. 2011;3(Journal Article):15–5.

  41. Vlassov AV, Magdaleno S, Setterquist R, et al. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta. 2012;1820(7):940–8.

    Article  CAS  PubMed  Google Scholar 

  42. Valadi H, Ekström K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–9.

    Article  CAS  PubMed  Google Scholar 

  43. Nolte-’t Hoen ENM, Buermans HPJ, Waasdorp M, et al. Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic Acids Res. 2012;40(18):9272–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Mittelbrunn M, Gutiérrez-Vázquez C, Villarroya-Beltri C, et al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun. 2011;2:282.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Batagov AO, Kuznetsov VA, Kurochkin IV. Identification of nucleotide patterns enriched in secreted RNAs as putative cis-acting elements targeting them to exosome nano-vesicles. BMC Genomics. 2011;12 Suppl 3:S18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kalra H, Simpson RJ, Ji H, et al. Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol. 2012;10(12):e1001450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mathivanan S, Fahner CJ, Reid GE, et al. ExoCarta 2012: database of exosomal proteins, RNA and lipids. Nucleic Acids Res. 2012;40(Database issue):D1241–4.

    Article  CAS  PubMed  Google Scholar 

  48. D.-K. Kim, B. Kang, O. Y. Kim, et al. EVpedia: an integrated database of high-throughput data for systemic analyses of extracellular vesicles. J Extracell Vesicles 2013;2.

  49. Lopez-Ramirez MA, Nicoli S. Role of miRNAs and epigenetics in neural stem cell fate determination. Epigenetics. 2014;9(1):90–100.

    Article  CAS  PubMed  Google Scholar 

  50. Stappert L, Roese-Koerner B, Brüstle O. The role of microRNAs in human neural stem cells, neuronal differentiation and subtype specification. Cell Tissue Res. 2015;359(1):47–64.

    Article  CAS  PubMed  Google Scholar 

  51. Chivet M, Javalet C, Hemming F, et al. Exosomes as a novel way of interneuronal communication. Biochem Soc Trans. 2013;41(1):241–4.

    Article  CAS  PubMed  Google Scholar 

  52. Frühbeis C, Fröhlich D, Kuo WP, et al. Extracellular vesicles as mediators of neuron-glia communication. Front Cell Neurosci. 2013;7:182.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Sharma P, Schiapparelli L, Cline HT. Exosomes function in cell-cell communication during brain circuit development. Curr Opin Neurobiol. 2013;23(Journal Article):997–1004.

    Article  CAS  PubMed  Google Scholar 

  54. Rajendran L, Bali J, Barr MM, et al. Emerging roles of extracellular vesicles in the nervous system. J Neurosci Off J Soc Neurosci. 2014;34(46):15482–9.

    Article  CAS  Google Scholar 

  55. Banigan MG, Kao PF, Kozubek JA, et al. Differential expression of exosomal microRNAs in prefrontal cortices of schizophrenia and bipolar disorder patients. PLoS ONE. 2013;8(1):e48814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Joshi P, Benussi L, Furlan R, et al. Extracellular vesicles in Alzheimer’s disease: friends or foes? Focus on aβ-vesicle interaction. Int J Mol Sci. 2015;16(3):4800–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Grandjean P, Landrigan PJ. Neurobehavioural effects of developmental toxicity. Lancet Neurol. 2014;13(3):330–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Grandjean P, Landrigan PJ. Developmental neurotoxicity of industrial chemicals. Lancet Lond Engl. 2006;368(9553):2167–78.

    Article  CAS  Google Scholar 

  59. Hill DS, Cabrera R, Wallis Schultz D, et al. Autism-like behavior and epigenetic changes associated with autism as consequences of in utero exposure to environmental pollutants in a mouse model. Behav Neurol. 2015;2015:426263.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Pallocca G, Fabbri M, Sacco MG, et al. miRNA expression profiling in a human stem cell-based model as a tool for developmental neurotoxicity testing. Cell Biol Toxicol. 2013;29(4):239–57.

    Article  CAS  PubMed  Google Scholar 

  61. Nerini-Molteni S, Mennecozzi M, Fabbri M, et al. MicroRNA profiling as a tool for pathway analysis in a human in vitro model for neural development. Curr Med Chem. 2012;19(36):6214–23.

    Article  CAS  PubMed  Google Scholar 

  62. Wang L, Bammler TK, Beyer RP, et al. Copper-induced deregulation of microRNA expression in the zebrafish olfactory system. Environ Sci Technol. 2013;47(13):7466–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. An J, Cai T, Che H, et al. The changes of miRNA expression in rat hippocampus following chronic lead exposure. Toxicol Lett. 2014;229(1):158–66.

    Article  CAS  PubMed  Google Scholar 

  64. Oh J-H, Son M-Y, Choi M-S, et al. Integrative analysis of genes and miRNA alterations in human embryonic stem cells-derived neural cells after exposure to silver nanoparticles. Toxicol Appl Pharmacol. 2015;299:8–23.

    Article  PubMed  CAS  Google Scholar 

  65. Lukiw WJ, Pogue AI. Induction of specific micro RNA (miRNA) species by ROS-generating metal sulfates in primary human brain cells. J Inorg Biochem. 2007;101(9):1265–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pogue AI, Li YY, Cui J-G, et al. Characterization of an NF-kappaB-regulated, miRNA-146a-mediated down-regulation of complement factor H (CFH) in metal-sulfate-stressed human brain cells. J Inorg Biochem. 2009;103(11):1591–5.

    Article  CAS  PubMed  Google Scholar 

  67. Wang L-L, Zhang Z, Li Q, et al. Ethanol exposure induces differential microRNA and target gene expression and teratogenic effects which can be suppressed by folic acid supplementation. Hum Reprod. 2009;24(3):562–79.

    Article  CAS  PubMed  Google Scholar 

  68. Sathyan P, Golden HB, Miranda RC. Competing interactions between micro-RNAs determine neural progenitor survival and proliferation after ethanol exposure: evidence from an ex vivo model of the fetal cerebral cortical neuroepithelium. J Neurosci Off J Soc Neurosci. 2007;27(32):8546–57.

    Article  CAS  Google Scholar 

  69. Tsai P-C, Bake S, Balaraman S, et al. MiR-153 targets the nuclear factor-1 family and protects against teratogenic effects of ethanol exposure in fetal neural stem cells. Biol Open. 2014;3(8):741–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Qi Y, Zhang M, Li H, et al. MicroRNA-29b regulates ethanol-induced neuronal apoptosis in the developing cerebellum through SP1/RAX/PKR cascade. J Biol Chem. 2014;289(14):10201–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lippai D, Bala S, Catalano D, et al. Micro-RNA-155 deficiency prevents alcohol-induced serum endotoxin increase and small bowel inflammation in mice. Alcohol Clin Exp Res. 2014;38(8):2217–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pietrzykowski AZ, Friesen RM, Martin GE, et al. Posttranscriptional regulation of BK channel splice variant stability by miR-9 underlies neuroadaptation to alcohol. Neuron. 2008;59(2):274–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pappalardo-Carter DL, Balaraman S, Sathyan P, et al. Suppression and epigenetic regulation of MiR-9 contributes to ethanol teratology: evidence from zebrafish and murine fetal neural stem cell models. Alcohol Clin Exp Res. 2013;37(10):1657–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Lewohl JM, Nunez YO, Dodd PR, et al. Up-regulation of microRNAs in brain of human alcoholics. Alcohol Clin Exp Res. 2011;35(11):1928–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yadav S, Pandey A, Shukla A, et al. miR-497 and miR-302b regulate ethanol-induced neuronal cell death through BCL2 protein and cyclin D2. J Biol Chem. 2011;286(43):37347–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Smirnova L, Block K, Sittka A, et al. MicroRNA profiling as tool for in vitro developmental neurotoxicity testing: the case of sodium valproate. PLoS One. 2014;9(6):e98892.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Aluru N, Deak K, Jenny MJ, et al. Developmental exposure to valproic acid alters the expression of microRNAs involved in neurodevelopment in zebrafish. Neurotoxicol Teratol. 2013;40:46–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chen C-L, Liu H, Guan X. Changes in microRNA expression profile in hippocampus during the acquisition and extinction of cocaine-induced conditioned place preference in rats. J Biomed Sci. 2013;20:96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Avissar-Whiting M, Veiga KR, Uhl KM, et al. Bisphenol A exposure leads to specific microRNA alterations in placental cells. Reprod Toxicol Elmsford N. 2010;29(4):401–6.

    Article  CAS  Google Scholar 

  80. Ogata K, Sumida K, Miyata K, et al. Circulating miR-9* and miR-384-5p as potential indicators for trimethyltin-induced neurotoxicity. Toxicol Pathol. 2015;43(2):198–208.

    Article  CAS  PubMed  Google Scholar 

  81. Maccani MA, Avissar-Whiting M, Banister CE, et al. Maternal cigarette smoking during pregnancy is associated with downregulation of miR-16, miR-21, and miR-146a in the placenta. Epigenetics. 2010;5(7):583–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fossati S, Baccarelli A, Zanobetti A, et al. Ambient particulate air pollution and microRNAs in elderly men. Epidemiol Camb Mass. 2014;25(1):68–78.

    Article  Google Scholar 

  83. Laterza OF, Lim L, Garrett-Engele PW, et al. Plasma microRNAs as sensitive and specific biomarkers of tissue injury. Clin Chem. 2009;55(11):1977–83.

    Article  CAS  PubMed  Google Scholar 

  84. Zhang B, Pan X. DX induces aberrant expression of microRNAs in mouse brain and liver. Environ Health Perspect. 2009;117(2):231–40.

    Article  CAS  PubMed  Google Scholar 

  85. Deng Y, Ai J, Guan X, Wang Z, et al. MicroRNA and messenger RNA profiling reveals new biomarkers and mechanisms for RDX induced neurotoxicity. BMC Genomics. 2014;15 Suppl 11:S1.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Kempf SJ, Casciati A, Buratovic S, et al. The cognitive defects of neonatally irradiated mice are accompanied by changed synaptic plasticity, adult neurogenesis and neuroinflammation. Mol Neurodegener. 2014;9:57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. De Felice B, Manfellotto F, Palumbo A, et al. Genome-wide microRNA expression profiling in placentas from pregnant women exposed to BPA. BMC Med Genomics. 2015;8:56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Marczylo EL, Amoako AA, Konje JC, et al. Smoking induces differential miRNA expression in human spermatozoa: a potential transgenerational epigenetic concern? Epigenetics. 2012;7(5):432–9.

    Article  CAS  PubMed  Google Scholar 

  89. Bai W, Chen Y, Yang J, et al. Aberrant miRNA profiles associated with chronic benzene poisoning. Exp Mol Pathol. 2014;96(3):426–30.

    Article  CAS  PubMed  Google Scholar 

  90. Tyler CR, Allan AM. The effects of arsenic exposure on neurological and cognitive dysfunction in human and rodent studies: a review. Curr Environ Health Rep. 2014;1:132–47.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Rager JE, Bailey KA, Smeester L, et al. Prenatal arsenic exposure and the epigenome: altered microRNAs associated with innate and adaptive immune signaling in newborn cord blood. Environ Mol Mutagen. 2014;55(3):196–208.

    Article  CAS  PubMed  Google Scholar 

  92. Caito S, Aschner M. Neurotoxicity of metals. Handb Clin Neurol. 2015;131:169–89.

    Article  PubMed  Google Scholar 

  93. Mason LH, Harp JP, Han DY. Pb neurotoxicity: neuropsychological effects of lead toxicity. BioMed Res Int. 2014;2014:840547.

    PubMed  PubMed Central  Google Scholar 

  94. Guilarte TR, Opler M, Pletnikov M. Is lead exposure in early life an environmental risk factor for schizophrenia? Neurobiological connections and testable hypotheses. Neurotoxicology. 2012;33(3):560–74.

    Article  CAS  PubMed  Google Scholar 

  95. Lidsky TI, Schneider JS. Lead neurotoxicity in children: basic mechanisms and clinical correlates. Brain J Neurol. 2003;126(Pt 1):5–19.

    Article  Google Scholar 

  96. Lidsky TI, Schneider JS. Adverse effects of childhood lead poisoning: the clinical neuropsychological perspective. Environ Res. 2006;100(2):284–93.

    Article  CAS  PubMed  Google Scholar 

  97. Solan TD, Lindow SW. Mercury exposure in pregnancy: a review. J Perinat Med. 2014;42(6):725–9.

    Article  CAS  PubMed  Google Scholar 

  98. Bose-O’Reilly S, McCarty KM, Steckling N, et al. Mercury exposure and children’s health. Curr Probl Pediatr Adolesc Health Care. 2010;40(8):186–215.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Taber KH, Hurley RA. Mercury exposure: effects across the lifespan. J Neuropsychiatry Clin Neurosci. 2008;20(4):iv–389.

    Article  Google Scholar 

  100. Miranda RC. MicroRNAs and fetal brain development: implications for ethanol teratology during the second trimester period of neurogenesis. Front Genet. 2012;3:77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Degroote S, Hunting D, Sébire G, et al. Autistic-like traits in Lewis rats exposed perinatally to a mixture of common endocrine disruptors. Endocr Disruptors. 2014;2(1):e976123.

    Article  Google Scholar 

  102. Wood AG, Nadebaum C, Anderson V, et al. Prospective assessment of autism traits in children exposed to antiepileptic drugs during pregnancy. Epilepsia. 2015;56(7):1047–55.

    Article  CAS  PubMed  Google Scholar 

  103. Velez-Ruiz NJ, Meador KJ. Neurodevelopmental effects of fetal antiepileptic drug exposure. Drug Saf. 2015;38(3):271–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Cohen MJ, Meador KJ, Browning N, et al. Fetal antiepileptic drug exposure: adaptive and emotional/behavioral functioning at age 6 years. Epilepsy Behav EB. 2013;29(2):308–15.

    Article  Google Scholar 

  105. P. Ranger and B. A. Ellenbroek. Perinatal influences of valproate on brain and behaviour: An animal model for autism. Curr Top Behav Neurosci 2015.

  106. Glebov K, Löchner M, Jabs R, et al. Serotonin stimulates secretion of exosomes from microglia cells. Glia. 2015;63(4):626–34.

    Article  PubMed  Google Scholar 

  107. Chivet M, Javalet C, Laulagnier K, et al. Exosomes secreted by cortical neurons upon glutamatergic synapse activation specifically interact with neurons. J Extracell Vesicles. 2014;3:24722.

    Article  PubMed  CAS  Google Scholar 

  108. Brites D, Fernandes A. Neuroinflammation and depression: microglia activation, extracellular microvesicles and microRNA dysregulation. Front Cell Neurosci. 2015;9:476.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Pegtel DM, Peferoen L, Amor S. Extracellular vesicles as modulators of cell-to-cell communication in the healthy and diseased brain. Philos Trans R Soc Lond B Biol Sci. 2014;369:1652.

    Article  CAS  Google Scholar 

  110. Fauré J, Lachenal G, Court M, et al. Exosomes are released by cultured cortical neurons. Mol Cell Neurosci. 2006;31(4):642–8.

    Article  PubMed  CAS  Google Scholar 

  111. Krämer-Albers E-M, Bretz N, Tenzer S, et al. Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: trophic support for axons? Proteomics Clin Appl. 2007;1(11):1446–61.

    Article  PubMed  CAS  Google Scholar 

  112. Guescini M, Genedani S, Stocchi V, Agnati LF. Astrocytes and glioblastoma cells release exosomes carrying mtDNA. J Neural Transm Vienna Aust 1996. 2010;117(1):1–4.

    CAS  Google Scholar 

  113. Potolicchio I, Carven GJ, Xu X, Stipp C, et al. Proteomic analysis of microglia-derived exosomes: metabolic role of the aminopeptidase CD13 in neuropeptide catabolism. J Immunol Baltim Md 1950. 2005;175(4):2237–43.

    CAS  Google Scholar 

  114. Lopez-Verrilli MA, Picou F, Court FA. Schwann cell-derived exosomes enhance axonal regeneration in the peripheral nervous system. Glia. 2013;61(11):1795–806.

    Article  PubMed  Google Scholar 

  115. Grapp M, Wrede A, Schweizer M, et al. Choroid plexus transcytosis and exosome shuttling deliver folate into brain parenchyma. Nat Commun. 2013;4(Journal Article):2123.

    PubMed  Google Scholar 

  116. Street JM, Barran PE, Mackay CL, et al. Identification and proteomic profiling of exosomes in human cerebrospinal fluid. J Transl Med. 2012;10:5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wang G, Dinkins M, He Q, Zhu G, et al. Astrocytes secrete exosomes enriched with proapoptotic ceramide and prostate apoptosis response 4 (PAR-4): potential mechanism of apoptosis induction in Alzheimer disease (AD). J Biol Chem. 2012;287(25):21384–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Taylor AR, Robinson MB, Gifondorwa DJ, et al. Regulation of heat shock protein 70 release in astrocytes: role of signaling kinases. Dev Neurobiol. 2007;67(13):1815–29.

    Article  CAS  PubMed  Google Scholar 

  119. Frühbeis C, Fröhlich D, Kuo WP, et al. Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication. PLoS Biol. 2013;11(7):e1001604.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Bakhti M, Winter C, Simons M. Inhibition of myelin membrane sheath formation by oligodendrocyte-derived exosome-like vesicles. J Biol Chem. 2011;286(1):787–96.

    Article  CAS  PubMed  Google Scholar 

  121. Fröhlich D, Kuo WP, Frühbeis C, et al. Multifaceted effects of oligodendroglial exosomes on neurons: impact on neuronal firing rate, signal transduction and gene regulation. Philos Trans R Soc Lond B Biol Sci. 2014;369:1652.

    Article  CAS  Google Scholar 

  122. Pasquinelli AE, Reinhart BJ, Slack F, et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature. 2000;408(6808):86–9.

    Article  CAS  PubMed  Google Scholar 

  123. Ziats MN, Rennert OM. Identification of differentially expressed microRNAs across the developing human brain. Mol Psychiatry. 2014;19(7):848–52.

    Article  CAS  PubMed  Google Scholar 

  124. Moreau MP, Bruse SE, Jornsten R, et al. Chronological changes in microRNA expression in the developing human brain. PLoS One. 2013;8(4):e60480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Babenko O, Kovalchuk I, Metz GAS. Stress-induced perinatal and transgenerational epigenetic programming of brain development and mental health. Neurosci Biobehav Rev. 2015;48:70–91.

    Article  PubMed  Google Scholar 

  126. Smirnova L, Gräfe A, Seiler A, et al. Regulation of miRNA expression during neural cell specification. Eur J Neurosci. 2005;21(6):1469–77.

    Article  PubMed  Google Scholar 

  127. Fiore R, Siegel G, Schratt G. MicroRNA function in neuronal development, plasticity and disease. Biochim Biophys Acta. 2008;1779(8):471–8.

    Article  CAS  PubMed  Google Scholar 

  128. Schaefer A, O’Carroll D, Tan CL, et al. Cerebellar neurodegeneration in the absence of microRNAs. J Exp Med. 2007;204(7):1553–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kataoka Y, Takeichi M, Uemura T. Developmental roles and molecular characterization of a Drosophila homologue of Arabidopsis Argonaute1, the founder of a novel gene superfamily. Genes Cells Devoted Mol Cell Mech. 2001;6(4):313–25.

    Article  CAS  Google Scholar 

  130. Giraldez AJ, Cinalli RM, Glasner ME, et al. MicroRNAs regulate brain morphogenesis in zebrafish. Science. 2005;308(5723):833–8.

    Article  CAS  PubMed  Google Scholar 

  131. Huang T, Liu Y, Huang M, et al. Wnt1-cre-mediated conditional loss of Dicer results in malformation of the midbrain and cerebellum and failure of neural crest and dopaminergic differentiation in mice. J Mol Cell Biol. 2010;2(3):152–63.

    Article  CAS  PubMed  Google Scholar 

  132. Hengst U, Cox LJ, Macosko EZ, et al. Functional and selective RNA interference in developing axons and growth cones. J Neurosci. 2006;26(21):5727–32.

    Article  CAS  PubMed  Google Scholar 

  133. Krichevsky AM, Sonntag K-C, Isacson O, et al. Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells Dayt Ohio. 2006;24(4):857–64.

    Article  CAS  Google Scholar 

  134. Hou Q, Ruan H, Gilbert J, et al. MicroRNA miR124 is required for the expression of homeostatic synaptic plasticity. Nat Commun. 2015;6:10045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Yoo AS, Sun AX, Li L, et al. MicroRNA-mediated conversion of human fibroblasts to neurons. Nature. 2011;476(7359):228–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Feliciano DM, Zhang S, Nasrallah CM, et al. Embryonic cerebrospinal fluid nanovesicles carry evolutionarily conserved molecules and promote neural stem cell amplification. PLoS One. 2014;9(2):e88810.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Sun E, Shi Y. MicroRNAs: small molecules with big roles in neurodevelopment and diseases. Exp Neurol. 2015;268:46–53.

    Article  CAS  PubMed  Google Scholar 

  138. Hui Z, Yongchao Z, Yongqing Z. Recent progresses in molecular genetics of autism spectrum disorders. Yi Chuan Hered Zhongguo Yi Chuan Xue Hui Bian Ji. 2015;37(9):845–54.

    Google Scholar 

  139. Washbourne P. Synapse assembly and neurodevelopmental disorders. Neuropsychopharmacology. 2015;40(1):4–15.

    Article  PubMed  Google Scholar 

  140. Lachenal G, Pernet-Gallay K, Chivet M, et al. Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity. Mol Cell Neurosci. 2011;46(2):409–18.

    Article  CAS  PubMed  Google Scholar 

  141. Bak M, Silahtaroglu A, Møller M, et al. MicroRNA expression in the adult mouse central nervous system. RNA. 2008;14(3):432–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kye M-J, Liu T, Levy SF, et al. Somatodendritic microRNAs identified by laser capture and multiplex RT-PCR. RNA N Y N. 2007;13(8):1224–34.

    Article  CAS  Google Scholar 

  143. Mellios N, Sugihara H, Castro J, et al. miR-132, an experience-dependent microRNA, is essential for visual cortex plasticity. Nat Neurosci. 2011;14(10):1240–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Hansen KF, Karelina K, Sakamoto K, Wayman GA, Impey S, Obrietan K. miRNA-132: a dynamic regulator of cognitive capacity. Brain Struct Funct. 2013;218(3):817–31.

    Article  PubMed  Google Scholar 

  145. Karpova NN. Role of BDNF epigenetics in activity-dependent neuronal plasticity. Neuropharmacology. 2014;76(Pt C):709–18.

    Article  CAS  PubMed  Google Scholar 

  146. Aksoy-Aksel A, Zampa F, Schratt G. MicroRNAs and synaptic plasticity—a mutual relationship. Philos Trans R Soc Lond B Biol Sci. 2014;369:1652.

    Article  CAS  Google Scholar 

  147. Ryan B, Joilin G, Williams JM. Plasticity-related microRNA and their potential contribution to the maintenance of long-term potentiation. Front Mol Neurosci. 2015;8:4.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Earls LR, Westmoreland JJ, Zakharenko SS. Non-coding RNA regulation of synaptic plasticity and memory: implications for aging. Ageing Res Rev. 2014;17:34–42.

    Article  CAS  PubMed  Google Scholar 

  149. Codocedo JF, Inestrosa NC. Environmental control of microRNAs in the nervous system: implications in plasticity and behavior. Neurosci Biobehav Rev. 2016;60:121–38.

    Article  CAS  PubMed  Google Scholar 

  150. Saugstad JA. Non-coding RNAs in stroke and neuroprotection. Front Neurol. 2015;6:50.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Lusardi TA, Farr CD, Faulkner CL, et al. Ischemic preconditioning regulates expression of microRNAs and a predicted target, MeCP2, in mouse cortex. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2010;30(4):744–56.

    Article  CAS  Google Scholar 

  152. Sun Y, Luo Z-M, Guo X-M, et al. An updated role of microRNA-124 in central nervous system disorders: a review. Front Cell Neurosci. 2015;9:193.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Abdolmaleky HM, Zhou J-R, Thiagalingam S. An update on the epigenetics of psychotic diseases and autism. Epigenomics. 2015;7(3):427–49.

    Article  CAS  PubMed  Google Scholar 

  154. Miller BH, Wahlestedt C. MicroRNA dysregulation in psychiatric disease. Brain Res. 2010;1338:89–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Issler O, Chen A. Determining the role of microRNAs in psychiatric disorders. Nat Rev Neurosci. 2015;16(4):201–12.

    Article  CAS  PubMed  Google Scholar 

  156. Hommers LG, Domschke K, Deckert J. Heterogeneity and individuality: microRNAs in mental disorders. J Neural Transm Vienna Aust 1996. 2015;122(1):79–97.

    CAS  Google Scholar 

  157. Zhou R, Yuan P, Wang Y, et al. Evidence for selective microRNAs and their effectors as common long-term targets for the actions of mood stabilizers. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2009;34(6):1395–405.

    Article  CAS  Google Scholar 

  158. Beveridge NJ, Gardiner E, Carroll AP, et al. Schizophrenia is associated with an increase in cortical microRNA biogenesis. Mol Psychiatry. 2010;15(12):1176–89.

    Article  CAS  PubMed  Google Scholar 

  159. Nguyen LS, Lepleux M, Makhlouf M, et al. Profiling olfactory stem cells from living patients identifies miRNAs relevant for autism pathophysiology. Mol Autism. 2016;7:1.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Abu-Elneel K, Liu T, Gazzaniga FS, et al. Heterogeneous dysregulation of microRNAs across the autism spectrum. Neurogenetics. 2008;9(3):153–61.

    Article  CAS  PubMed  Google Scholar 

  161. Ander BP, Barger N, Stamova B, et al. Atypical miRNA expression in temporal cortex associated with dysregulation of immune, cell cycle, and other pathways in autism spectrum disorders. Mol Autism. 2015;6:37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Talebizadeh Z, Butler MG, Theodoro MF. Feasibility and relevance of examining lymphoblastoid cell lines to study role of microRNAs in autism. Autism Res Off J Int Soc Autism Res. 2008;1(4):240–50.

    Article  Google Scholar 

  163. Ghahramani Seno MM, Hu P, Gwadry FG, et al. Gene and miRNA expression profiles in autism spectrum disorders. Brain Res. 2011;1380:85–97.

    Article  CAS  PubMed  Google Scholar 

  164. Sarachana T, Zhou R, Chen G, et al. Investigation of post-transcriptional gene regulatory networks associated with autism spectrum disorders by microRNA expression profiling of lymphoblastoid cell lines. Genome Med. 2010;2(4):23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Mundalil Vasu M, Anitha A, Thanseem I, et al. Serum microRNA profiles in children with autism. Mol Autism. 2014;5:40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Huang F, Zhou T, Yao X, et al. miRNA profiling in autism spectrum disorder in China. Genomics Data. 2015;6:108–9.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Banerjee-Basu S, Larsen E, Muend S. Common microRNAs target established ASD genes. Front Neurol. 2014;5:205.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Mellios N, Sur M. The emerging role of microRNAs in schizophrenia and autism spectrum disorders. Front Psych. 2012;3:39.

    Google Scholar 

  169. Olde Loohuis NFM, Kole K, Glennon JC, et al. Elevated microRNA-181c and microRNA-30d levels in the enlarged amygdala of the valproic acid rat model of autism. Neurobiol Dis. 2015;80:42–53.

    Article  CAS  PubMed  Google Scholar 

  170. Kandemir H, Erdal ME, Selek S, et al. Evaluation of several micro RNA (miRNA) levels in children and adolescents with attention deficit hyperactivity disorder. Neurosci Lett. 2014;580:158–62.

    Article  CAS  PubMed  Google Scholar 

  171. Wu LH, Peng M, Yu M, et al. Circulating MicroRNA Let-7d in attention-deficit/hyperactivity disorder. Neuromolecular Med. 2015;17(2):137–46.

    Article  CAS  PubMed  Google Scholar 

  172. Chistiakov DA, Chekhonin VP. Extracellular vesicles shed by glioma cells: pathogenic role and clinical value. Tumour Biol J Int Soc Oncodevelopmental Biol Med. 2014;35(9):8425–38.

    Article  CAS  Google Scholar 

  173. Gonda DD, Akers JC, Kim R, et al. Neuro-oncologic applications of exosomes, microvesicles, and other nano-sized extracellular particles. Neurosurgery. 2013;72(4):501–10.

    Article  PubMed  Google Scholar 

  174. Viaud S, Théry C, Ploix S, et al. Dendritic cell-derived exosomes for cancer immunotherapy: what’s next? Cancer Res. 2010;70(4):1281–5.

    Article  CAS  PubMed  Google Scholar 

  175. Liddelow SA. Development of the choroid plexus and blood-CSF barrier. Front Neurosci. 2015;9:32.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Moretti R, Pansiot J, Bettati D, et al. Blood–brain barrier dysfunction in disorders of the developing brain. Front Neurosci. 2015;9:40.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Alvarez-Erviti L, Seow Y, Yin H, Betts C, et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29(4):341–5.

    Article  CAS  PubMed  Google Scholar 

  178. Lakhal S, Wood MJA. Exosome nanotechnology: an emerging paradigm shift in drug delivery: exploitation of exosome nanovesicles for systemic in vivo delivery of RNAi heralds new horizons for drug delivery across biological barriers. BioEssays News Rev Mol Cell Dev Biol. 2011;33(10):737–41.

    Article  CAS  Google Scholar 

  179. Skog J, Würdinger T, van Rijn S, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008;10(12):1470–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Wood MJA, O’Loughlin AJ, Samira L. Exosomes and the blood–brain barrier: implications for neurological diseases. Ther Deliv. 2011;2(9):1095–9.

    Article  CAS  PubMed  Google Scholar 

  181. Kapogiannis D, Boxer A, Abner E, et al. Neural origin plasma exosomes provide novel biomarkers for brain insulin resistance in Alzheimer’s disease (I11-5B). Neurology. 2015;84(14 Supplement):I11–5B.

    Google Scholar 

  182. Shao H, Chung J, Balaj L, et al. Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy. Nat Med. 2012;18(12):1835–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Theoharides TC, Zhang B. Neuro-inflammation, blood–brain barrier, seizures and autism. J Neuroinflammation. 2011;8:168.

    Article  PubMed  PubMed Central  Google Scholar 

  184. de Vries HE, Kooij G, Frenkel D, et al. Inflammatory events at blood–brain barrier in neuroinflammatory and neurodegenerative disorders: implications for clinical disease. Epilepsia. 2012;53 Suppl 6:45–52.

    Article  PubMed  PubMed Central  Google Scholar 

  185. Jia R, Li J, Rui C, et al. Comparative proteomic profile of the human umbilical cord blood exosomes between normal and preeclampsia pregnancies with high-resolution mass spectrometry. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol. 2015;36(6):2299–306.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larissa Takser.

Ethics declarations

Conflict of Interest

Virginie Gillet, Darel John Hunting, and Larissa Takser declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Topical Collection on Environmental Epigenetics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gillet, V., Hunting, D.J. & Takser, L. Turing Revisited: Decoding the microRNA Messages in Brain Extracellular Vesicles for Early Detection of Neurodevelopmental Disorders. Curr Envir Health Rpt 3, 188–201 (2016). https://doi.org/10.1007/s40572-016-0093-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40572-016-0093-0

Keywords

Navigation