Skip to main content
Log in

A hybrid FEM-DEM approach to the simulation of fluid flow laden with many particles

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

In this work we address a contribution to the study of particle laden fluid flows in scales smaller than TFM (two-fluid models). The hybrid model is based on a Lagrangian–Eulerian approach. A Lagrangian description is used for the particle system employing the discrete element method (DEM), while a fixed Eulerian mesh is used for the fluid phase modeled by the finite element method (FEM). The resulting coupled DEM-FEM model is integrated in time with a subcycling scheme. The aforementioned scheme is applied in the simulation of a seabed current to analyze which mechanisms lead to the emergence of bedload transport and sediment suspension, and also quantify the effective viscosity of the seabed in comparison with the ideal no-slip wall condition. A simulation of a salt plume falling in a fluid column is performed, comparing the main characteristics of the system with an experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Topin V, Dubois F, Monerie Y, Perales F, Wachs A (2011) Micro-rheology of dense particulate flows: application to immersed avalanches. J Non-Newton Fluid Mech 166(1):63–72

    Article  MATH  Google Scholar 

  2. Chhabra RP (2012) Bubbles, drops, and particles in non-Newtonian fluids. CRC press, Boca Raton

    Google Scholar 

  3. Peker SM, Helvaci SS (2011) Solid-liquid two phase flow. Elsevier, Amsterdam

    Google Scholar 

  4. Phillips RJ, Armstrong RC, Brown RA, Graham AL, Abbott JR (1992) constitutive equation for concentrated suspensions that accounts for shear-induced particle migration. Phys Fluids A 4(1):30–40

    Article  MATH  Google Scholar 

  5. Zhang DZ, Prosperetti A (1997) Momentum and energy equations for disperse two-phase flows and their closure for dilute suspensions. Int J Multiph Flow 23(3):425–453

    Article  MATH  Google Scholar 

  6. Wu S, Yuan L (2015) A hybrid FD-DEM solver for rigid particles in viscous fluid. Comput Fluids 118:159–166

    Article  MathSciNet  Google Scholar 

  7. Van der Hoef MA, Annaland MS, Deen NG, Kuipers JAM (2008) Numerical simulation of dense gas-solid fluidized beds: a multiscale modeling strategy. Annu Rev Fluid Mech 40:47–70

    Article  MathSciNet  MATH  Google Scholar 

  8. Hoomans BPB, Kuipers JAM, Briels WJ, Van Swaaij WPM (1996) Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidised bed: a hard-sphere approach. Chem Eng Sci 51(1):99–118

    Article  Google Scholar 

  9. Shimizu Y (2004) Fluid coupling in PFC2D and PFC3D. Numerical modeling in micromechanics via particle methods. In: Proceedings of the 2nd international PFC symposium, Kyoto, pp 281–287

  10. Elias RN, Martins MAD, Coutinho ALGA (2005) Parallel edge-based inexact newton solution of steady incompressible 3D navier-stokes equations., Euro-Par 2005 parallel processingSpringer, Berlin, pp 1237–1245

    Google Scholar 

  11. Cho SH, Choi HG, Yoo JY (2005) Direct numerical simulation of fluid flow laden with many particles. Int J Multiph Flow 31(4):435–451

    Article  MATH  Google Scholar 

  12. Radjaï F, Dubois F (2011) Discrete-element modeling of granular materials. Wiley-ISTE, New York

    Google Scholar 

  13. Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Geotechnique (Thomas Telford) 29(1):47–65

    Article  Google Scholar 

  14. O’Sullivan C (2011) Particulate discrete element modelling: a geomechanics perspective. Taylor & Francis, New York

    Google Scholar 

  15. Kobayashi T, Kawaguchi T, Tanaka T, Tsuji Y (2002) DEM analysis on flow pattern of Geldart’s group A particles in fluidized bed. In: Proceedings of the world congress on particle technology, pp 21–25

  16. Li J, Kuipers JAM (2002) Effect of pressure on gas-solid flow behavior in dense gas-fluidized beds: a discrete particle simulation study. Powder Technol 127(2):173–184

    Article  Google Scholar 

  17. Li J, Kuipers JAM (2003) Gas-particle interactions in dense gas-fluidized beds. Chem Eng Sci 58(3):711–718

    Article  Google Scholar 

  18. Moon SJ, Kevrekidis IG, Sundaresan S (2006) Particle simulation of vibrated gas-fluidized beds of cohesive fine powders. Ind Eng Chem Res 45(21):6966–6977

    Article  Google Scholar 

  19. Ye M, Van der Hoef MA, Kuipers JAM (2005) The effects of particle and gas properties on the fluidization of Geldart A particles. Chem Eng Sci 60(16):4567–4580

    Article  Google Scholar 

  20. Batchelor GK (2000) An introduction to fluid dynamics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  21. Hallermeier RJ (1981) Terminal settling velocity of commonly occurring sand grains. Sedimentology 28(6):859–865

    Article  Google Scholar 

  22. Hoomans BPB, Kuipers JAM, Van Swaaij WPM (2000) Granular dynamics simulation of segregation phenomena in bubbling gas-fluidised beds. Powder Technol 109(1):41–48

    Article  Google Scholar 

  23. Anderson TB, Jackson R (1967) Fluid mechanical description of fluidized beds. Equations of motion. Ind Eng Chem Fundam 6(4):527–539

    Article  Google Scholar 

  24. Kuipers JAM, Van Duin KJ, Van Beckum FPH, Van Swaaij WPM (1992) A numerical model of gas-fluidized beds. Chem Eng Sci 47(8):1913–1924

    Article  Google Scholar 

  25. Wen CY, Yu YH (1966) Mechanics of fluidization. Chem Eng Prog Symp Ser 62:100–111

    Google Scholar 

  26. Rowe PN, Henwood GA (1961) Drag forces in a hydraulic model of a fluidized bed-part I. Trans Inst Chem Eng 39:43–54

    Google Scholar 

  27. Elias RN, Coutinho ALGA (2007) Stabilized edge-based finite element simulation of free-surface flows. Int J Numer Methods Fluids 54((6–8)):965–993

    Article  MathSciNet  MATH  Google Scholar 

  28. Guerra GM, Zio S, Camata JJ, Rochinha FA, Elias RN, Paraizo PLB, Coutinho ALGA (2013) Numerical simulation of particle-laden flows by the residual-based variational multiscale method. Int J Numer Methods Fluids 73(8):729–749

    MathSciNet  Google Scholar 

  29. Lins EF, Elias RN, Rochinha FA, Coutinho ALGA (2010) Residual-based variational multiscale simulation of free surface flows. Comput Mech 46(4):545–557

    Article  MathSciNet  MATH  Google Scholar 

  30. Bouillard JX, Lyczkowski RW, Gidaspow D (1989) Porosity distribution in a fluidized bed with an immersed obstacle. AlIChE J 35(6):908–922

    Article  Google Scholar 

  31. Belytschko T, Yen HJ, Mullen R (1979) Mixed methods for time integration. Comput Methods Appl Mech Eng 17:259–275

    Article  MATH  Google Scholar 

  32. Zienkiewicz OC, Taylor RL, Zhu JZ (2013) The finite element method: its basis and fundamentals, 7th edn. Butterworth-Heinemann, Saint Louis

    MATH  Google Scholar 

  33. Asgian MI, Cundall PA, Brady BH (1995) Mechanical stability of propped hydraulic fractures—a numerical study. J Pet Technol (Society of Petroleum Engineers) 47(3):203–208

    Google Scholar 

  34. Bear J (2012) Hydraulics of groundwater. Courier Dover Publications, New York

    Google Scholar 

  35. Lohner R (1995) Robust, vectorized search algorithms for interpolation on unstructured grids. J Comput Phys 118(2):380–387

    Article  MathSciNet  MATH  Google Scholar 

  36. Munjiza AA (2004) The combined finite-discrete element method. Wiley, Chichester

    Book  MATH  Google Scholar 

  37. Zhu HP, Zhou ZY, Yang RY, Yu AB (2007) Discrete particle simulation of particulate systems: theoretical developments. Chem Eng Sci 62(13):3378–3396

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the partial support provided by Petrobras S.A., the Brazilian Oil Company, CNPq, the National Research Counsil, and ANP, the National Petroleum Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus V. S. Casagrande.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casagrande, M.V.S., Alves, J.L.D., Silva, C.E. et al. A hybrid FEM-DEM approach to the simulation of fluid flow laden with many particles. Comp. Part. Mech. 4, 213–227 (2017). https://doi.org/10.1007/s40571-016-0102-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-016-0102-y

Keywords

Navigation