Skip to main content

Advertisement

Log in

Evaluation of the efficacy of physical therapy on cognitive decline at 6-month follow-up in Parkinson disease patients with mild cognitive impairment: a randomized controlled trial

  • Original Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Background

In Parkinson’s disease (PD), physical activity may represent a possible non-pharmacological intervention not only for improving motor symptoms but also for modulating cognitive impairment.

Aims

To evaluate the efficacy of an intensive physical program on cognitive functions in mid-stage PD patients with mild cognitive impairment (PD-MCI) over a 6-month follow-up.

Methods

This is a 6-month randomized controlled follow-up study. 40 PD-MCI patients were randomized to receive physical therapy (PT) or no specific intervention beside drug treatment (CT). Cognitive and motor assessments were performed at baseline (T0), 4 weeks after baseline (T1) and 6 months after T0. In a previous study, we reported a significant improvement in global cognitive functioning and attention/working-memory at T1. Here, we evaluated the residual effect of the training intervention at 6 months on both cognitive and motor performances.

Results

Intra-group analysis showed that at T2 most of cognitive and motor performances remained stable in the PT when compared to T0, while a significant worsening was observed in the CT. Between-group comparison at T2 showed significantly better results in PT than CT as regards MoCA and motor scales. The percentage change of cognitive and motor performances between T1 and T2 confirmed the benefit of physical therapy on global cognitive functioning scores (MMSE and MoCA).

Conclusions

In this follow-up extension of a longitudinal randomized controlled study, we demonstrated that physical therapy has a positive effect on cognitive functions, which extends beyond the duration of the treatment itself to, at least temporarily, reducing cognitive decline.

Trial registration

Trial registration number (ClinicalTrials.gov): NCT04012086 (9th July 2019).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found below: [Zenodo; 10.5281/zenodo.4710446].

References

  1. Gallagher DA, Lees AJ, Schrag A (2010) What are the most important nonmotor symptoms in patients with Parkinson’s disease and are we missing them? Mov Disord 25:2493–2500. https://doi.org/10.1002/mds.23394

    Article  PubMed  Google Scholar 

  2. Litvan I, Aarsland D, Adler CH et al (2011) MDS task force on mild cognitive impairment in Parkinson’s disease: critical review of PD-MCI. Mov Disord 26:1814–1824. https://doi.org/10.1002/mds.23823

    Article  PubMed  PubMed Central  Google Scholar 

  3. Goldman JG, Weintraub D (2015) Advances in the treatment of cognitive impairment in Parkinson’s disease. Mov Disord 30:1471–1489. https://doi.org/10.1002/mds.26352

    Article  CAS  PubMed  Google Scholar 

  4. Livingston G, Sommerlad A, Orgeta V et al (2017) Dementia prevention, intervention, and care. Lancet 390:2673–2734. https://doi.org/10.1016/S0140-6736(17)31363-6

    Article  PubMed  Google Scholar 

  5. Bernini S, Alloni A, Panzarasa S et al (2019) A computer-based cognitive training in Mild Cognitive Impairment in Parkinson’s Disease. NeuroRehabilitation 44:555–567. https://doi.org/10.3233/NRE-192714

    Article  PubMed  Google Scholar 

  6. Leung IHK, Walton CC, Hallock H et al (2015) Cognitive training in Parkinson disease: a systematic review and meta-analysis. Neurology 85:1843–1851. https://doi.org/10.1212/WNL.0000000000002145

    Article  PubMed  PubMed Central  Google Scholar 

  7. Stuckenschneider T, Askew CD, Menêses AL et al (2019) The effect of different exercise modes on domain-specific cognitive function in patients suffering from Parkinson’s disease: a systematic review of randomized controlled trials. J Parkinsons Dis 9:73–95. https://doi.org/10.3233/JPD-181484

    Article  PubMed  Google Scholar 

  8. Salgado S, Williams N, Kotian R et al (2013) An evidence-based exercise regimen for patients with mild to moderate Parkinson’s disease. Brain Sci 3:87–100. https://doi.org/10.3390/brainsci3010087

    Article  PubMed  PubMed Central  Google Scholar 

  9. Reynolds GO, Otto MW, Ellis TD et al (2016) The therapeutic potential of exercise to improve mood, cognition, and sleep in Parkinson’s disease. Mov Disord 31:23–38. https://doi.org/10.1002/mds.26484

    Article  PubMed  Google Scholar 

  10. Murray DK, Sacheli MA, Eng JJ et al (2014) The effects of exercise on cognition in Parkinson’s disease: a systematic review. Transl Neurodegener 3:1–13. https://doi.org/10.1186/2047-9158-3-5

    Article  Google Scholar 

  11. Da Silva FC, Iop RDR, De Oliveira LC et al (2018) Effects of physical exercise programs on cognitive function in Parkinson’s disease patients: a systematic review of randomized controlled trials of the last 10 years. PLoS ONE 13:1–19. https://doi.org/10.1371/journal.pone.0193113

    Article  CAS  Google Scholar 

  12. Picelli A, Varalta V, Melotti C et al (2016) Effects of treadmill training on cognitive and motor features of patients with mild to moderate Parkinson’s disease: a pilot, single-blind, randomized controlled trial. Funct Neurol 31:25–31. https://doi.org/10.11138/fneur/2016.31.1.025

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pietrelli A, Lopez-Costa J, Goñi R et al (2012) Aerobic exercise prevents age-dependent cognitive decline and reduces anxiety-related behaviors in middle-aged and old rats. Neuroscience 202:252–266. https://doi.org/10.1016/j.neuroscience.2011.11.054

    Article  CAS  PubMed  Google Scholar 

  14. Tuon T, Valvassori SS, Dal Pont GC et al (2014) Physical training prevents depressive symptoms and a decrease in brain-derived neurotrophic factor in Parkinson’s disease. Brain Res Bull 108:106–112. https://doi.org/10.1016/j.brainresbull.2014.09.006

    Article  CAS  PubMed  Google Scholar 

  15. Ferrazzoli D, Ortelli P, Cucca A et al (2020) Motor-cognitive approach and aerobic training: a synergism for rehabilitative intervention in Parkinson’s disease. Neurodegener Dis Manag 10:41–55. https://doi.org/10.2217/nmt-2019-0025

    Article  PubMed  Google Scholar 

  16. Banks SJ, Bayram E, Shan G et al (2019) Non-motor predictors of freezing of gait in Parkinson’s disease. Gait Posture 68:311–316. https://doi.org/10.1016/j.gaitpost.2018.12.009

    Article  PubMed  Google Scholar 

  17. McKee KE, Hackney ME (2013) The effects of adapted tango on spatial cognition and disease severity in Parkinson’s disease. J Mot Behav 45:519–529. https://doi.org/10.1080/00222895.2013.834288

    Article  PubMed  Google Scholar 

  18. Pompeu JE, dos Santos Mendes FA, da Silva KG et al (2012) Effect of Nintendo WiiTMBased motor and cognitive training on activities of daily living in patients with Parkinson’s disease: a randomised clinical trial. Physiother (United Kingdom) 98:196–204. https://doi.org/10.1016/j.physio.2012.06.004

    Article  Google Scholar 

  19. Nadeau A, Pourcher E, Corbeil P (2014) Effects of 24 wk of treadmill training on gait performance in Parkinson’s disease. Med Sci Sport Exerc 46:645–655. https://doi.org/10.1249/MSS.0000000000000144

    Article  Google Scholar 

  20. David FJ, Robichaud JA, Leurgans SE et al (2015) Exercise improves cognition in Parkinson’s disease: the PRET-PD randomized, clinical trial. Mov Disord 30:1657–1663. https://doi.org/10.1002/mds.26291

    Article  PubMed  PubMed Central  Google Scholar 

  21. Silveira CRA, Roy EA, Intzandt BN, Almeida QJ (2018) Aerobic exercise is more effective than goal-based exercise for the treatment of cognition in Parkinson’s disease. Brain Cogn 122:1–8. https://doi.org/10.1016/j.bandc.2018.01.002

    Article  PubMed  Google Scholar 

  22. Avenali M, Picascia M, Minafra B et al (2019) Intensive physical therapy mitigates cognitive decline in people with Parkinson’ s disease. J Alzheimers Dis Park 9:475. https://doi.org/10.4172/2161-0460.1000475

    Article  Google Scholar 

  23. Postuma RB, Berg D, Stern M et al (2015) MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 30:1591–1601. https://doi.org/10.1002/mds.26424

    Article  PubMed  Google Scholar 

  24. Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression and mortality. Neurology 17:427–442. https://doi.org/10.1212/wnl.17.5.427

    Article  CAS  PubMed  Google Scholar 

  25. Litvan I, Goldman JG, Tröster AI et al (2012) Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement Disorder Society Task Force guidelines. Mov Disord 27:349–356. https://doi.org/10.1002/mds.24893

    Article  PubMed  PubMed Central  Google Scholar 

  26. Magni E, Binetti G, Bianchetti A et al (1996) Mini-Mental State Examination: a normative study in Italian elderly population. Eur J Neurol 3:198–202. https://doi.org/10.1111/j.1468-1331.1996.tb00423.x

    Article  CAS  PubMed  Google Scholar 

  27. Conti S, Bonazzi S, Laiacona M et al (2015) Montreal Cognitive Assessment (MoCA)-Italian version: regression based norms and equivalent scores. Neurol Sci 36:209–214. https://doi.org/10.1007/s10072-014-1921-3

    Article  PubMed  Google Scholar 

  28. Spinnler H (1987) Italian standardization and classification of Neuropsychological tests. The Italian Group on the Neuropsychological Study of Aging. Ital J Neurol Sci Suppl 8:1–120

    Google Scholar 

  29. Carlesimo GA, Caltagirone C, Gainotti G et al (1996) The mental deterioration battery: normative data, diagnostic reliability and qualitative analyses of cognitive impairment. Eur Neurol 36:378–384. https://doi.org/10.1159/000117297

    Article  CAS  PubMed  Google Scholar 

  30. Appollonio I, Leone M, Isella V et al (2005) The Frontal Assessment Battery (FAB): normative values in an Italian population sample. Neurol Sci 26:108–116. https://doi.org/10.1007/s10072-005-0443-4

    Article  CAS  PubMed  Google Scholar 

  31. Giovagnoli AR, Del Pesce M, Mascheroni S et al (1996) Trail making test: normative values from 287 normal adult controls. Ital J Neurol Sci 17:305–309. https://doi.org/10.1007/BF01997792

    Article  CAS  PubMed  Google Scholar 

  32. Goetz CG, Tilley BC, Shaftman SR et al (2008) Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results. Mov Disord 23:2129–2170. https://doi.org/10.1002/mds.22340

    Article  PubMed  Google Scholar 

  33. Tinetti ME (1986) Performance-oriented assessment of mobility problems in elderly patients. J Am Geriatr Soc 34:119–126. https://doi.org/10.1111/j.1532-5415.1986.tb05480.x

    Article  CAS  PubMed  Google Scholar 

  34. Hauser SL, Dawson DM, Lehrich JR et al (1983) Intensive immunosuppression in progressive multiple sclerosis. N Engl J Med 308:173–180. https://doi.org/10.1056/NEJM198301273080401

    Article  CAS  PubMed  Google Scholar 

  35. Uc EY, Doerschug KC, Magnotta V et al (2014) Phase I/II randomized trial of aerobic exercise in Parkinson disease in a community setting. Neurology 83:413–425. https://doi.org/10.1212/WNL.0000000000000644

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hou L, Chen W, Liu X et al (2017) Exercise-induced neuroprotection of the Nigrostriatal dopamine system in Parkinson’s disease. Front Aging Neurosci 9:358. https://doi.org/10.3389/fnagi.2017.00358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Petzinger GM, Fisher BE, McEwen S et al (2013) Exercise-enhanced neuroplasticity targeting motor and cognitive circuitry in Parkinson’s disease. Lancet Neurol 12:716–726. https://doi.org/10.1016/S1474-4422(13)70123-6

    Article  PubMed  PubMed Central  Google Scholar 

  38. Smith PJ, Blumenthal JA, Hoffman BM et al (2010) Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosom Med 72:239–252. https://doi.org/10.1097/PSY.0b013e3181d14633

    Article  PubMed  PubMed Central  Google Scholar 

  39. Intzandt B, Beck EN, Silveira CRA (2018) The effects of exercise on cognition and gait in Parkinson’s disease: a scoping review. Neurosci Biobehav Rev 95:136–169. https://doi.org/10.1016/j.neubiorev.2018.09.018

    Article  PubMed  Google Scholar 

  40. Weng TB, Pierce GL, Darling WG et al (2017) The acute effects of aerobic exercise on the functional connectivity of human brain networks. Brain Plast 2:171–190. https://doi.org/10.3233/BPL-160039

    Article  PubMed  PubMed Central  Google Scholar 

  41. Fontanesi C, Kvint S, Frazzitta G et al (2016) Intensive rehabilitation enhances lymphocyte BDNF-TrkB signaling in patients with Parkinson’s disease. Neurorehabil Neural Repair 30:411–418. https://doi.org/10.1177/1545968315600272

    Article  PubMed  Google Scholar 

  42. Leckie RL, Oberlin LE, Voss MW et al (2014) BDNF mediates improvements in executive function following a 1-year exercise intervention. Front Hum Neurosci 8:985. https://doi.org/10.3389/fnhum.2014.00985

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ahlskog JE (2011) Does vigorous exercise have a neuroprotective effect in Parkinson disease? Neurology 77:288–294. https://doi.org/10.1212/WNL.0b013e318225ab66

    Article  PubMed  PubMed Central  Google Scholar 

  44. Nagano-Saito A, Martinu K, Monchi O (2014) Function of basal ganglia in bridging cognitive and motor modules to perform an action. Front Neurosci 8:187. https://doi.org/10.3389/fnins.2014.00187

    Article  PubMed  PubMed Central  Google Scholar 

  45. Leisman G, Melillo R (2013) The basal ganglia: motor and cognitive relationships in a clinical neurobehavioral context. Rev Neurosci 24:9–25. https://doi.org/10.1515/revneuro-2012-0067

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by a grant of the Italian Ministry of Health (Ricerca Corrente 2017–2019).

Author information

Authors and Affiliations

Authors

Contributions

MA and SB: study concept and design, acquisition of data, analysis and interpretation of data, and drafting of the manuscript. All the authors: interpretation of data. MP: acquisition of data. ES and CT: critical revision of the manuscript for important intellectual content.

Corresponding author

Correspondence to Sara Bernini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was performed in accordance with the guidelines of the Declaration of Helsinki. The study was approved by local Ethics Committee of San Matteo Hospital (Pavia, Italy).

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avenali, M., Picascia, M., Tassorelli, C. et al. Evaluation of the efficacy of physical therapy on cognitive decline at 6-month follow-up in Parkinson disease patients with mild cognitive impairment: a randomized controlled trial. Aging Clin Exp Res 33, 3275–3284 (2021). https://doi.org/10.1007/s40520-021-01865-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-021-01865-4

Keywords

Navigation