Skip to main content

Advertisement

Log in

Alternative splicing in Alzheimer’s disease

  • Review
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is the most frequent neurodegenerative disorder in the elderly, occurring in approximately 20% of people older than 80. The molecular causes of AD are still poorly understood. However, recent studies have shown that Alternative Splicing (AS) is involved in the gene expression reprogramming associated with the functional changes observed in AD patients. In particular, mutations in cis-acting regulatory sequences as well as alterations in the activity and sub-cellular localization of trans-acting splicing factors and components of the spliceosome machinery are associated with splicing abnormalities in AD tissues, which may influence the onset and progression of the disease. In this review, we discuss the current molecular understanding of how alterations in the AS process contribute to AD pathogenesis. Finally, recent therapeutic approaches targeting aberrant AS regulation in AD are also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Albert MS, DeKosky ST, Dickson D et al (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:270–279

    PubMed  PubMed Central  Google Scholar 

  2. Ittner LM, Götz J (2011) Amyloid-β and tau—a toxic pas de deux in Alzheimer’s disease. Nat Rev Neurosci 12:65–72

    CAS  PubMed  Google Scholar 

  3. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259

    CAS  PubMed  Google Scholar 

  4. Braak H, Alafuzoff I, Arzberger T et al (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 112:389–404

    PubMed  PubMed Central  Google Scholar 

  5. Schellenberg GD, Bird TD, Wijsman EM et al (1992) Genetic linkage evidence for a familial Alzheimer’s disease locus on chromosome 14. Science 258:668–671

    CAS  PubMed  Google Scholar 

  6. Vetrivel KS, Zhang YW, Xu H et al (2006) Pathological and physiological functions of presenilins. Mol Neurodegener 1:4

    PubMed  PubMed Central  Google Scholar 

  7. Alonso Vilatela ME, López-López M, Yescas-Gómez P (2012) Genetics of Alzheimer’s disease. Arch Med Res 43:622–631

    CAS  PubMed  Google Scholar 

  8. Chabot B, Shkreta L (2016) Defective control of pre-messenger RNA splicing in human disease. J Cell Biol 212:13–27

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Love JE, Hayden EJ, Rohn TT (2015) Alternative splicing in alzheimer’ s disease. J Park Dis Alzheimer’s Dis 2:6

    Google Scholar 

  10. Adusumalli S, Ngian ZK, Lin WQ et al (2019) Increased intron retention is a post-transcriptional signature associated with progressive aging and Alzheimer’s disease. Aging Cell 18:e12928

    PubMed  PubMed Central  Google Scholar 

  11. Braggin JE, Bucks SA, Course MM et al (2019) Alternative splicing in a presenilin 2 variant associated with Alzheimer disease. Ann Clin Transl Neurol 6:762–777

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Han S, Miller J, Byun S et al (2019) Identification of exon skipping events associated with Alzheimer’s disease in the human hippocampus. BMC Med Genomics 12:13

    PubMed  PubMed Central  Google Scholar 

  13. Patel H, Hodges AK, Curtis C et al (2019) Transcriptomic analysis of probable asymptomatic and symptomatic alzheimer brains. Brain Behav Immun 80:644–656

    PubMed  Google Scholar 

  14. Lee Y, Han S, Kim D et al (2018) Genetic variation affecting exon skipping contributes to brain structural atrophy in Alzheimer’s disease. AMIA Jt Summits Transl Sci Proc 2018:124–131

    PubMed Central  Google Scholar 

  15. Tollervey JR, Wang Z, Hortobágyi T et al (2011) Analysis of alternative splicing associated with aging and neurodegeneration in the human brain. Genome Res 21:1572–1582

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Treutlein B, Gokce O, Quake SR et al (2014) Cartography of neurexin alternative splicing mapped by single-molecule long-read mRNA sequencing. Proc Natl Acad Sci 111:E1291–E1299

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu W, Wang F, Xu Q et al (2017) BCAS2 is involved in alternative mRNA splicing in spermatogonia and the transition to meiosis. Nat Commun 8:14182

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hannigan MM, Zagore LL, Licatalosi DD (2017) Ptbp2 controls an alternative splicing network required for cell communication during spermatogenesis. Cell Rep 19:2598–2612

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Angiolini F, Belloni E, Giordano M et al (2019) A novel L1CAM isoform with angiogenic activity generated by NOVA2-mediated alternative splicing. Elife 8:e44305

    PubMed  PubMed Central  Google Scholar 

  20. Giampietro C, Deflorian G, Gallo S et al (2015) The alternative splicing factor Nova2 regulates vascular development and lumen formation. Nat Commun 6:8479

    CAS  PubMed  Google Scholar 

  21. Yamamoto ML, Clark TA, Gee SL et al (2009) Alternative pre-mRNA splicing switches modulate gene expression in late erythropoiesis. Blood 113:3363–3370

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Baralle FE, Giudice J (2017) Alternative splicing as a regulator of development and tissue identity. Nat Rev Mol Cell Biol 18:437–451

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Martinez NM, Lynch KW (2013) Control of alternative splicing in immune responses: many regulators, many predictions, much still to learn. Immunol Rev 253:216–236

    PubMed  PubMed Central  Google Scholar 

  24. Ghigna C, Valacca C, Biamonti G (2008) Alternative splicing and tumor progression. Curr Genomics 9:556–570

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Darnell RB (2013) RNA protein interaction in neurons. Annu Rev Neurosci 36:243–270

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Raj B, Blencowe BJ (2015) Alternative splicing in the mammalian nervous system: recent insights into mechanisms and functional roles. Neuron 87:14–27

    CAS  PubMed  Google Scholar 

  27. Lee S, Cieply B, Yang Y et al (2018) Esrp1-regulated splicing of Arhgef11 isoforms is required for epithelial tight junction integrity. Cell Rep 25:2417–2430.e5

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Nagasaki H, Arita M, Nishizawa T et al (2005) Species-specific variation of alternative splicing and transcriptional initiation in six eukaryotes. Gene 364:53–62

    CAS  PubMed  Google Scholar 

  29. Biamonti G, Maita L, Montecucco A (2018) The Krebs cycle connection: reciprocal influence between alternative splicing programs and cell metabolism. Front Oncol 8:408

    PubMed  PubMed Central  Google Scholar 

  30. Kornblihtt AR, Schor IE, Alló M et al (2013) Alternative splicing: a pivotal step between eukaryotic transcription and translation. Nat Rev Mol Cell Biol 14:153–165

    CAS  PubMed  Google Scholar 

  31. Yeo G, Holste D, Kreiman G et al (2004) Variation in alternative splicing across human tissues. Genome Biol 5:R74

    PubMed  PubMed Central  Google Scholar 

  32. Dillman AA, Hauser DN, Gibbs JR et al (2013) MRNA expression, splicing and editing in the embryonic and adult mouse cerebral cortex. Nat Neurosci 16:499–506

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Su CH, Dhananjaya D, Tarn WY (2018) Alternative splicing in neurogenesis and brain development. Front Mol Biosci 5:12

    PubMed  PubMed Central  Google Scholar 

  34. Licatalosi DD, Darnell RB (2006) Splicing regulation in neurologic disease. Neuron 52:93–101

    CAS  PubMed  Google Scholar 

  35. Deschênes M, Chabot B (2017) The emerging role of alternative splicing in senescence and aging. Aging Cell 16:918–933

    PubMed  PubMed Central  Google Scholar 

  36. Grothe MJ, Sepulcre J, Gonzalez-Escamilla G et al (2018) Molecular properties underlying regional vulnerability to Alzheimer’s disease pathology. Brain 141:2755–2771

    PubMed  PubMed Central  Google Scholar 

  37. Twine NA, Janitz K, Wilkins MR et al (2011) Whole transcriptome sequencing reveals gene expression and splicing differences in brain regions affected by Alzheimer’s disease. PLoS ONE 6:e16266

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Andersen K, Launer LJ, Dewey ME et al (1999) Gender differences in the incidence of AD and vascular dementia: the EURODEM studies. Neurology 53:1992–1997

    CAS  PubMed  Google Scholar 

  39. Seshadri S, Wolf PA, Beiser A et al (1997) Lifetime risk of dementia and Alzheimer’s disease: the impact of mortality on risk estimates in the Framingham Study. Neurology 49:1498–1504

    CAS  PubMed  Google Scholar 

  40. Fisher DW, Bennett DA, Dong H (2018) Sexual dimorphism in predisposition to Alzheimer’s disease. Neurobiol Aging 70:308–324

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Dumitrescu L, Mayeda ER, Sharman K et al (2019) Sex differences in the genetic architecture of Alzheimer’s disease. Curr Genet Med Rep 7:13–21

    PubMed  PubMed Central  Google Scholar 

  42. Wang GS, Cooper TA (2007) Splicing in disease: disruption of the splicing code and the decoding machinery. Nat Rev Genet 8:749–761

    CAS  PubMed  Google Scholar 

  43. De Strooper B, Iwatsubo T, Wolfe MS (2012) Presenilins and γ-secretase: structure, function, and role in Alzheimer disease. Cold Spring Harb Perspect Med 2:a006304

    PubMed  PubMed Central  Google Scholar 

  44. De Jonghe C, Cruts M, Rogaeva EA et al (1999) Aberrant splicing in the presenilin-1 intron 4 mutation causes presenile Alzheimer’s disease by increased Aβ42 secretion. Hum Mol Genet 8:1529–1540

    PubMed  Google Scholar 

  45. Goode BL, Chau M, Denis PE et al (2002) Structural and functional differences between 3-Repeat and 4-Repeat tau isoforms. J Biol Chem 275:38182–38189

    Google Scholar 

  46. Espinoza M, De Silva R, Dickson DW et al (2008) Differential incorporation of tau isoforms in Alzheimer’s disease. J Alzheimer’s Dis 14:1–16

    CAS  Google Scholar 

  47. Buée L, Bussière T, Buée-Scherrer V et al (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev 33:95–130

    PubMed  Google Scholar 

  48. Goedert M, Spillantini MG, Jakes R et al (1989) Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 3:519–526

    CAS  PubMed  Google Scholar 

  49. Ghetti B, Oblak AL, Boeve BF et al (2015) Invited review: frontotemporal dementia caused by microtubule-associated protein tau gene (MAPT) mutations: a chameleon for neuropathology and neuroimaging. Neuropathol Appl Neurobiol 41:24–46

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Donahue CP, Muratore C, Wu JY et al (2006) Stabilization of the tau exon 10 stem loop alters pre-mRNA splicing. J Biol Chem 281:23302–23306

    CAS  PubMed  Google Scholar 

  51. Allen M, Kachadoorian M, Quicksall Z et al (2014) Association of MAPT haplotypes with Alzheimer’s disease risk and MAPT brain gene expression levels. Alzheimer’s Res Ther 6:39

    Google Scholar 

  52. Valenca GT, Srivastava GP, Oliveira-Filho J et al (2016) The role of MAPT haplotype H2 and isoform 1N/4R in Parkinsonism of older adults. PLoS ONE 1:e0157452

    Google Scholar 

  53. Hoxha E, Lippiello P, Zurlo F et al (2018) The emerging role of altered cerebellar synaptic processing in Alzheimer’s disease. Front Aging Neurosci 10:396

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Trabzuni D, Wray S, Vandrovcova J et al (2012) MAPT expression and splicing is differentially regulated by brain region: relation to genotype and implication for tauopathies. Hum Mol Genet 21:4094–4103

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Trabzuni D, Ramasamy A, Imran S et al (2013) Widespread sex differences in gene expression and splicing in the adult human brain. Nat Commun 4:2771

    PubMed  Google Scholar 

  56. Zou F, Gopalraj RK, Lok J et al (2008) Sex-dependent association of a common low-density lipoprotein receptor polymorphism with RNA splicing efficiency in the brain and Alzheimer’s disease. Hum Mol Genet 17:929–935

    CAS  PubMed  Google Scholar 

  57. Lambert JC, Ibrahim-Verbaas CA, Harold D et al (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 45:1452–1458

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Raj T, Li YI, Wong G et al (2018) Integrative transcriptome analyses of the aging brain implicate altered splicing in Alzheimer’s disease susceptibility. Nat Genet 50:1584–1592

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Raj T, Ryan KJ, Replogle JM et al (2014) CD33: increased inclusion of exon 2 implicates the Ig V-set domain in Alzheimer’s disease susceptibility. Hum Mol Genet 23:2729–2736

    CAS  PubMed  Google Scholar 

  60. Li YI, van de Geijn B, Raj A et al (2016) RNA splicing is a primary link between genetic variation and disease. Science 352:600–604

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Borreca A, Gironi K, Amadoro G et al (2016) Opposite dysregulation of fragile-X mental retardation protein and heteronuclear ribonucleoprotein C protein associates with enhanced APP translation in Alzheimer disease. Mol Neurobiol 53:3227–3234

    CAS  PubMed  Google Scholar 

  62. Mueller SG, Weiner MW, Thal LJ et al (2005) The Alzheimer’s disease neuroimaging initiative. Neuroimaging Clin N Am 15:869–877

    PubMed  PubMed Central  Google Scholar 

  63. Kong LL, Miao D, Tan L et al (2018) Genome-wide association study identifies RBFOX1 locus influencing brain glucose metabolism. Ann Transl Med 6:436

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Wamsley B, Jaglin XH, Favuzzi E et al (2018) Rbfox1 mediates cell-type-specific splicing in cortical interneurons. Neuron 100:846–859

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Alkallas R, Fish L, Goodarzi H et al (2017) Inference of RNA decay rate from transcriptional profiling highlights the regulatory programs of Alzheimer’s disease. Nat Commun 8:909

    PubMed  PubMed Central  Google Scholar 

  66. Matsui T, Ingelsson M, Fukumoto H et al (2007) Expression of APP pathway mRNAs and proteins in Alzheimer’s disease. Brain Res 1161:116–123

    CAS  PubMed  Google Scholar 

  67. Berson A, Barbash S, Shaltiel G et al (2012) Cholinergic-associated loss of hnRNP-A/B in Alzheimer’s disease impairs cortical splicing and cognitive function in mice. EMBO Mol Med 4:730–742

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Ferreira-Vieira TH, Guimaraes IM, Silva FR et al (2016) Alzheimer’s disease: targeting the cholinergic system. Curr Neuropharmacol 14:101–115

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kolisnyk B, Al-Onaizi M, Soreq L et al (2017) Cholinergic surveillance over hippocampal RNA metabolism and Alzheimer’s-like pathology. Cereb Cortex 27:3553–3567

    PubMed  Google Scholar 

  70. Lu J, Shu R, Zhu Y (2018) Dysregulation and dislocation of SFPQ disturbed DNA organization in Alzheimer’s disease and frontotemporal dementia. J Alzheimer’s Dis 61:1311–1321

    CAS  Google Scholar 

  71. Ke YD, Dramiga J, Schütz U et al (2012) Tau-mediated nuclear depletion and cytoplasmic accumulation of SFPQ in Alzheimer’s and Pick’s disease. PLoS ONE 7:e35678

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Ray P, Kar A, Fushimi K et al (2011) PSF suppresses tau exon 10 inclusion by interacting with a stem-loop structure downstream of exon 10. J Mol Neurosci 45:453–466

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Buratti E, Baralle FE (2008) Multiple roles of TDP-43 in gene expression, splicing regulation, and human disease. Front Biosci 13:867–878

    CAS  PubMed  Google Scholar 

  74. Neumann M, Sampathu DM, Kwong LK et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133

    CAS  PubMed  Google Scholar 

  75. Amador-Ortiz C, Lin WL, Ahmed Z et al (2007) TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer’s disease. Ann Neurol 61:435–445

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang G, Yang H, Yan S et al (2015) Cytoplasmic mislocalization of RNA splicing factors and aberrant neuronal gene splicing in TDP-43 transgenic pig brain. Mol Neurodegener 10:42

    PubMed  PubMed Central  Google Scholar 

  77. Bai B, Hales CM, Chen PC et al (2013) U1 small nuclear ribonucleoprotein complex and RNA splicing alterations in Alzheimer’s disease. Proc Natl Acad Sci 110:16562–16567

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Hales CM, Dammer EB, Diner I et al (2014) Aggregates of small nuclear ribonucleic acids (snRNAs) in Alzheimer’s disease. Brain Pathol 24:344–351

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Bai B (2018) U1 snRNP alteration and neuronal cell cycle reentry in Alzheimer disease. Front Aging Neurosci 10:75

    PubMed  PubMed Central  Google Scholar 

  80. Yang Y, Geldmacher DS, Herrup K (2011) DNA replication precedes neuronal cell death in Alzheimer’s disease. J Neurosci 21:2661–2668

    Google Scholar 

  81. Kroemer G, El-Deiry WS, Golstein P et al (2009) Classification of cell death: recommendations of the nomenclature committee on cell death 2009. Cell Death Differ 12:1463–1467

    Google Scholar 

  82. Heppner FL, Ransohoff RM, Becher B (2015) Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci 16:358–372

    CAS  PubMed  Google Scholar 

  83. Ule J, Ule A, Spencer J et al (2005) Nova regulates brain-specific splicing to shape the synapse. Nat Genet 37:844–852

    CAS  PubMed  Google Scholar 

  84. Ruggiu M, Herbst R, Kim N et al (2009) Rescuing Z+ agrin splicing in Nova null mice restores synapse formation and unmasks a physiologic defect in motor neuron firing. Proc Natl Acad Sci 106:3513–3518

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Iruela-Arispe ML, Davis GE (2009) Cellular and molecular mechanisms of vascular lumen formation. Dev Cell 16:222–231

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Solecki DJ, Govek EE, Tomoda T et al (2006) Neuronal polarity in CNS development. Genes Dev 20:2639–2647

    CAS  PubMed  Google Scholar 

  87. Segura I, De Smet F, Hohensinner PJ et al (2009) The neurovascular link in health and disease: an update. Trends Mol Med 15:439–451

    CAS  PubMed  Google Scholar 

  88. Quaegebeur A, Lange C, Carmeliet P (2011) The neurovascular link in health and disease: molecular mechanisms and therapeutic implications. Neuron 71:406–424

    CAS  PubMed  Google Scholar 

  89. Chang JL, Hinrich AJ, Roman B et al (2018) Targeting amyloid-β precursor protein, APP, splicing with antisense oligonucleotides reduces toxic amyloid-β production. Mol Ther 26:1539–1551

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Hinrich AJ, Jodelka FM, Chang JL et al (2016) Therapeutic correction of ApoER2 splicing in Alzheimer’s disease mice using antisense oligonucleotides. EMBO Mol Med 8:328–345

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Wasser CR, Herz J (2016) Splicing therapeutics for Alzheimer’s disease. EMBO Mol Med 8:308–310

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Schoch KM, DeVos SL, Miller RL et al (2016) Increased 4R-tau induces pathological changes in a human-tau mouse model. Neuron 90:941–947

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Peacey E, Rodriguez L, Liu Y et al (2012) Targeting a pre-mRNA structure with bipartite antisense molecules modulates tau alternative splicing. Nucleic Acids Res 40:9836–9849

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Rodriguez-Martin T, Garcia-Blanco MA, Mansfield SG et al (2005) Reprogramming of tau alternative splicing by spliceosome-mediated RNA trans-splicing: implications for tauopathies. Proc Natl Acad Sci 102:15659–15664

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Avale ME, Rodríguez-Martín T, Gallo JM (2013) Trans-splicing correction of tau isoform imbalance in a mouse model of tau mis-splicing. Hum Mol Genet 22:2603–2611

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Espíndola SL, Damianich A, Alvarez RJ et al (2018) Modulation of tau isoforms imbalance precludes tau pathology and cognitive decline in a mouse model of tauopathy. Cell Rep 23:709–715

    PubMed  Google Scholar 

  97. Tanaka H, Kondo K, Chen X et al (2018) The intellectual disability gene PQBP1 rescues Alzheimer’s disease pathology. Mol Psychiatry 23:2090–2110

    CAS  PubMed  PubMed Central  Google Scholar 

  98. György B, Lööv C, Zaborowski MP et al (2018) CRISPR/Cas9 mediated disruption of the Swedish APP allele as a therapeutic approach for early-onset Alzheimer’s disease. Mol Ther Nucl Acids 11:429–440

    Google Scholar 

  99. Konermann S, Lotfy P, Brideau NJ et al (2018) Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors. Cell 173:665–676

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Radde R, Duma C, Goedert M et al (2008) The value of incomplete mouse models of Alzheimer’s disease. Eur J Nucl Med Mol Imaging 35:S70–S74

    CAS  PubMed  Google Scholar 

  101. Blencowe BJ (2006) Alternative splicing: new insights from global analyses. Cell 126:37–47

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to the authors of many interesting and important papers that have not been cited in this review.

Funding

This work was supported by the National Research Council of Italy (CNR), Research Project “Aging: molecular and technological innovations for improving the health of the elderly population” (Prot. MIUR 2867 25.11.2011) and AMANDA project Accordo Quadro Regione Lombardia–CNR to G.B. E.B. is supported by AIRC - FIRC ITALY postdoctoral fellowship; D.P. is awarded with a Arturo Falaschi - Fondazione Adriano Buzzati-Traverso (FAB-T) postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all parts of the present review including papers selection, information synthesis, and paper drafting/editing. All authors approved and verified the final version.

Corresponding author

Correspondence to Giuseppe Biamonti.

Ethics declarations

Conflict of interest

C.G. is a consultant for Gene Tools. Funding bodies had no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.

Statement of human and animal rights

This review does not include studies with human or animal samples performed by any of the authors.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biamonti, G., Amato, A., Belloni, E. et al. Alternative splicing in Alzheimer’s disease. Aging Clin Exp Res 33, 747–758 (2021). https://doi.org/10.1007/s40520-019-01360-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-019-01360-x

Keywords

Navigation