Skip to main content
Log in

Influence of the Laser-Beam Distribution on the Seam Dimensions for Laser-Transmission Welding: A Simulative Approach

  • Published:
Lasers in Manufacturing and Materials Processing Aims and scope Submit manuscript

Abstract

Radiation propagation and temperature development are simulated for laser-transmission welding of polycarbonate and polybutylene terephthalate parts. The simulations are carried out for a Gaussian- and an M-shape laser beam. For polycarbonate the shape of the laser beam is preserved, while for polybutylene terephthalate it is altered due to scattering processes. The resulting intensity and integrated intensity distribution in the joining zone are calculated for both polymers. They give rise to different temperature fields. The dimensions of the model seam are approximated by the dimensions of the melt isotherm. For polycarbonate the seam generated by a Gaussian beam has a non-homogeneous thickness and a width that is smaller than the beam diameter. For an M-shape beam it has a homogeneous thickness and its width scales with the width of the integrated intensity. For polybutylene terephthalate volumetric scattering destroys the original beam shape in the joining zone. The distributions of the integrated intensities and the dimensions of the seam are similar for both types of beams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Grewell, D.A.: Application with infrared welding of thermoplastics. ANTEC 1999, 1411–1415 (1999)

    Google Scholar 

  2. BASF Aktiengesellschaft, Transmission Laser-Welding of Thermoplastics, http://www2.basf.us/webplasticsportal/cre?gui=1&dtitle=searchResult&dtext=1&objecttype=ktn_technical_documents&ktn_t_doctype=Technical_Papers. (2001)

  3. Bachmann, F.G., Russek.: Laser welding of polymers using high power diode lasers. Proc. SPIE 505–518 (2002)

  4. BASF Corporation: Innovations in laser welding of thermoplastics. http://www2.basf.us/webplasticsportal/cre?gui=1&dtitle=searchResult&dtext=1&objecttype=ktn_technical_documents&ktn_t_doctype=Technical_Papers (2002)

  5. Russek, U., Gillner, A., Poggel, M.: Joining with light. Kunststoffe Int. 50–54 (2006)

  6. Haberstroh, E., Hoffmann, W.-M., Poprawe, R., Fahri, S.: Applications of laser transmission processes for the joining. Microsyst. Technol. 632–639 (2006)

  7. Klotzbuecher, T., Letschert, M., Braune, T., Drese, K.-S., Doll, T.: Diode laser welding for packaging of transparent micro-structured polymer chips. In: Bachmann, F.G., Hoving, W., Lu, Y., Washio, K. (Eds.), Lasers and applications in science and engineering. 610704–610704-14., SPIE (2006)

  8. Prabhakaran, P., Kontopoulou, M., Zak, G., Bates, G.J., Baylis, B.K.: Contour laser - laser-transmission welding of glass reinforced nylon 6. J. Thermoplastic Compos. Mater. 427–439 (2006)

  9. Geiger, M., Frick, T., Schmidt, M.: Optical properties of plastics and their role for the modelling of the laser transmission welding process. Prod. Eng. Res. Devel. 49–55 (2009)

  10. Ghorbel, E., Casalino, G., Abed, S.: Laser diode transmission welding of polypropylene: geometrical and microstructure characterisation of weld. Mater. Des. 2745–2750 (2009)

  11. Chen, M.-L., Bates, P.J., Zak, G.: Effect of carbon black on light transmission in laser welding of thermoplastics. J. Mater. Process. Technol. 43–47 (2011)

  12. Industrial Laser Solution for Manufacturing.: Fiber laser welding of white goods. http://www.industrial-lasers.com/articles/2013/04/fiber-laser-welding-of-white-goods--.html, accessed 17 August 2015. (2013)

  13. LPKF, Kunststoffschweißen für Automotive, Medizintechnik und die Consumer Industrie, 2015, http://www.lpkf-laserwelding.de. (2015)

  14. Taft, E.A., Philipp, H.R.: Optical properties of graphite*. Phys. Rev. 197–202 (1964)

  15. Djurisic, A.B., Li, H.E.: Optical properties of graphite. J. Appl. Phys. 7404–7410 (1999)

  16. Boglea, A., Olowinsky, A., Gillner, A.: Fibre laser welding for packaging of disposable polymeric microfluidic-biochips. Appl. Surf. Sci. 254, 1174–1178 (2007)

    Article  Google Scholar 

  17. Aden, M., Otto, G., Duwe, C.: Irradiation strategy for laser transmission welding of thermoplastics using high brilliance laser source. Int. Polym. Process. 28, 300–305 (2013)

    Article  Google Scholar 

  18. Aden, M., Liviany, F., Olowinsky, A.: Joint strength for laser transmission welding of thermoplastics: a simulation approach. Int. Polymer Process. 79–83 (2013)

  19. Rauschenberger, J., Vogler, D., Raab, C., Gubler, U.: Diffractive beam shaping for enhanced laser polymer welding. In Klotzbach, U., Washio, K., Arnold, C.B. (Eds.), SPIE LASE, SPIE 935110. C.B. (2015)

  20. LIMO Lissotschenko Mikrooptik GmbH, Laser welding thermoplastics with customized beam intensity. http://www.industrial-lasers.com/articles/print/volume-26/issue-4/departments/enter-the-world-of-green-cars.html, accessed 17 August 2015. (2011)

  21. Kagan, V.A., Bray, R.G., Kuhn, W.P.: laser transmission welding of semi-crystalline thermoplastics-part I: optical characterization of nylon based plastics. J. Reinf. Plast. Comp. 21, 1101–1122 (2002)

    Article  Google Scholar 

  22. Aden, M.,Roesner, A., Olowinsky A.: Optical characterization of Polycarbonate: influence of additives on optical properties. J. Polymer Sci.: Part B 451–455 (2010)

  23. Aden, M.,Mamuschkin, V.,Olowinsky, A.,Glaser, S.: Influence of titanium dioxide pigments on the optical properties of polycarbonate and polypropylene for diode laser wavelengths. J. Appl. Polym. Sci. 131 (2014)

  24. Hänsch, D.: Die optischen Eigenschaften von Polymeren und ihre Bedeutung für das Durchstrahlschweißen mit Diodenlaser: Diss. RWTH Aachen, Shaker (2001)

    Google Scholar 

  25. Caudill, S.E.,Grubbs, W.T.: Interferometric measurements of refractive index dispersion in polymers over the visible and near-infrared spectral range. J. Appl. Polym. Sci. 65–72 (2006)

  26. Ishimaru, A.: Wave propagation and scattering in random media, an IEEE/OUP series on electromagnetic wave theory. IEEE Press; Oxford University Press, New York (1997)

    MATH  Google Scholar 

  27. Gangadhara, S.: What scattering models are available in zemax?. http://www.zemax.com/support/resource-center/knowledgebase/what-scattering-models-are-available-in-zemax, accessed 11.2015. (2010)

  28. Potente, H., Korte, J., Becker, F.: Laser transmission welding of thermoplastics: analysis of the heating phase. j. Reinf. Plast. Comp. 914–920 (1999)

  29. Van de Ven, J D, Erdman, A.G.: Laser transmission welding of thermoplastics—part I: temperature and pressure modeling. J. Manufac. Sci. Eng. 849–858 (2007)

  30. Mayboudi, L.S.,Birk, A.M.,Zak, G.,Bates, P.J.: Laser transmission welding of a lap-joint: thermal imaging observations and three–dimensional finite element modeling. J. Heat Transfer 1177–1186 (2007)

  31. Ilie, M.,Kneip, J.-C., Matteı, S., Nichici, A.: Through-transmission laser welding of polymers – temperature field modeling and infrared investigation. Infrared Phys. Technol. 73–79 (2007)

  32. Geiger, M., Frick, T., Schmidt, M.: Optical properties of plastics and their role for the modelling of the laser transmission welding process. Prod. Eng. Res. Dev. 49–55 (2009)

  33. Ilya Mingareev, I., Weirauch, F., Olowinsky, A., Shah, L., Kadwani, P., Richardson, M.: Welding of polymers using a 2 mm thulium fiber laser. Optics Laser Technol. 2095–2099 (2012)

  34. Acherjee, B., Kuar, A.S., Mitra, S., Misra, D.: Modeling and analysis of simultaneous laser transmission welding of polycarbonates using an FEM and RSM combined approach. Optios Laser Technol. 44, 995–1006 (2012)

    Article  Google Scholar 

  35. Russek, U.A.: Prozesstechnische Aspekte des Laserdurchstrahlschweissens von Thermoplasten, Berichte aus der Lasertechnik. Shaker, Aachen (2006)

    Google Scholar 

  36. Mitsubishi Engineering Plastics, About Novaduran. www.google.de/search?q=limo&ie=utf-8&oe=utf-8&gws_rd=cr&ei=KCcmVc-EINHhaL77gYgD#q=www.m-ep.co.jpg%2Fen%2Fpdf%2Fproduct%2Fnovaduran%2Fphysicality.pdf. (2015)

  37. Aden, M.,Mamuschkin, V.,Olowinsky, A.: Influence of carbon black and indium tin oxide absorber particles on laser transmission welding. Optics Laser Technol. 87–91 (2015)

  38. Frei, W.: Modeling laser-material interactions in COMSOL multiphysics. www.comsol.de/blogs/modeling-laser-material-interactions-in-comsol-multiphysics/. (2015)

Download references

Acknowledgments

The author would like to thank Mrs. Frauke Legewie from LIMO Lissotschenko Mikrooptik GmbH, who provides the M-shape data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirko Aden.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aden, M. Influence of the Laser-Beam Distribution on the Seam Dimensions for Laser-Transmission Welding: A Simulative Approach. Lasers Manuf. Mater. Process. 3, 100–110 (2016). https://doi.org/10.1007/s40516-016-0023-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40516-016-0023-x

Keywords

Navigation