Skip to main content
Log in

Nonlocal generalized uncertainty principle and its implications in gravity and entropic Verlinde holographic approach

  • Regular Paper
  • Published:
Quantum Studies: Mathematics and Foundations Aims and scope Submit manuscript

Abstract

Recently, a nonlocal generalized uncertainty principle was derived based on the new notion of quantum acceleratum operator within the framework of nonlocal-maximal quantum mechanics. In this study, we discuss some of its properties and some of its implications in Newtonian gravity theory and Verlinde’s entropic holographic approach. A number of features were revealed; in particular, the emergence of a logarithmic correction to the gravitational Newtonian potential, a minimum energy and a minimum mass which depend on the gravitational coupling constant. Based on the concept of holographic principle, Verlinde’s conjecture and equipartition rule, a quantized Newton’s force law of gravity for a particle of mass m gravitating around a Planck mass is derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kempf, A., Mangano, G., Mann, R.B.: Hilbert space representation of the minimal length uncertainty relation. Phys. Rev. D 52, 1108 (1995)

    Article  MathSciNet  Google Scholar 

  2. Nozari, K., Pedram, P.: Minimal length and bouncing particle spectrum. Europhys. Lett. 92, 50013 (2010)

    Article  Google Scholar 

  3. Maggiore, M.: Quantum groups, gravity and the generalized uncertainty principle. Phys. Rev. D 49, 5182 (1994)

    Article  MathSciNet  Google Scholar 

  4. Kragh, H.: Heisenberg’s lattice world: the 1930 theory sketch, American. J. Phys. 63(1995), 595–605 (1930)

    Google Scholar 

  5. Heisenberg, W., Pauli, W.: Zur Quantendynamik der Wellenfelder. Zeitsch. Phys. 56, 1–61 (1929)

    Article  MATH  Google Scholar 

  6. Chang, L.N., Lewis, Z., Minic, D., Takeuchi, T.: On the minimal length uncertainty relation and the foundations of string theory. Adv. High Energy Phys. 2011, 30 (2011) (Article ID 493514)

  7. Suykens, J.A.K.: Extending Newton’s law from nonlocal-in-time kinetic energy. Phys. Lett. A 373, 1201–1211 (2009)

    Article  MATH  Google Scholar 

  8. Caianiello, E.R.: Is there a maximal acceleration. Lett. Nuovo Cimento 32, 65–70 (1981)

    Article  Google Scholar 

  9. Caianiello, E.R.: Geometry from quantum mechanics. Nuovo Cimento B 59, 350–366 (1980). 13

    Article  MathSciNet  Google Scholar 

  10. Caianiello, E.R.: Quantum and other physics as systems theory. Riv. Nuovo Cimento 15, 1–65 (1992)

    Article  MathSciNet  Google Scholar 

  11. Caianiello, E.R.: Maximal acceleration as a consequence of Heisenberg’s uncertainty relations. Lett. Nuovo Cimento 41, 370–372 (1984)

    Article  MathSciNet  Google Scholar 

  12. El-Nabulsi, R.A.: On maximal acceleration and quantum acceleratum operator in quantum mechanics. Quant. Stud. Math. Found. 5, 543–550 (2018)

    Article  MathSciNet  Google Scholar 

  13. El-Nabulsi, R.A.: Nonlocal uncertainty and its implications in quantum mechanics at ultramicroscopic scales. Quant. Stud. Math. Found. (2018). https://doi.org/10.1007/s40509-018-0170-1

  14. Ali, A.F., Moussa, M.: Towards thermodynamics with generalized uncertainty relation. Adv. High Energy Phys. 2014, 7 (2014) (Article ID 629148)

  15. Das, S., Vagenas, E.C.: Phenomenological implications of the generalized uncertainty principle. Can. J. Phys. 87, 233–240 (2009)

    Article  Google Scholar 

  16. Sprenger, M., Bleicher, M., Nicolini, P.: Neutrino oscillations as a novel probe for a minimal length. Class. Quantum Grav. 28, 235019 (2011)

    Article  MATH  Google Scholar 

  17. Majumder, B., Sen, S.: Do the modified uncertainty principle and polymer quantization predict same physics? Phys. Lett. B 717, 291–294 (2012)

    Article  Google Scholar 

  18. Nozari, K., Saghafi, S.: Natural cutoffs and quantum tunneling from black hole horizon. J. High. Energ. Phys. 2012, 5 (2012)

    Article  Google Scholar 

  19. Nozari, K., Mehdipour, S.H.: Implications of minimal length scale on the statistical mechanics of ideal gas. Chaos, Solitons Fractals 32, 1637–1644 (2007)

    Article  Google Scholar 

  20. Nozari, K., Fazlpour, B.: Generalized uncertainty principle, modified dispersion relations and the early universe thermodynamics. Gen. Rel. Grav. 38, 1661–1679 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. McCulloch, M.C.: Gravity from the uncertainty relation. Astrophys. Space Sci. 349, 957–959 (2014)

    Article  Google Scholar 

  22. McCulloch, M.C.: Quantized inertia from relativity and the uncertainty principle. Europhys. Lett. 115, 69001 (2016)

    Article  Google Scholar 

  23. Cadoni, M.: An Einstein-like theory of gravity with a non-Newtonian weak-field limit. Gen. Rel. Grav. 36, 2681–2688 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fabris, J.C., Campos, J.P.: Spiral galaxies rotation curves with a logarithmic corrected Newtonian gravitational potential. Gen. Rel. Grav. 41, 93–104 (2009)

    Article  MATH  Google Scholar 

  25. Iorio, L.: The post-Newtonian mean anomaly advance as further post-Keplerian parameter in pulsar binary systems. Astrophys. Space Sci. 312, 331–335 (2007)

    Article  Google Scholar 

  26. Ragos, O., Haranas, I., Gkigkitzis, I.: Effects in the anomalistic period of celestial bodies to a logarithmic correction to the Newtonian gravitational constant. Astrophys. Space Sci. 345, 67–72 (2013)

    Article  Google Scholar 

  27. Quigg, C., Rosuer, J.L.: Quarkonium level spacing. Phys. Lett. B 71, 153–157 (1977)

    Article  Google Scholar 

  28. Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Freeman, San Francisco (1973)

    Google Scholar 

  29. Tucker, V.H.: Radiation Processes in Astrophysics. MIT Press, Cambridge (1975)

    Google Scholar 

  30. Hoyle, F., Burbidge, G., Narlikar, J.: A Different Approach to Cosmology. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  31. Lake, M.J.: Which quantum theory must be reconciled with gravity? (and what does it mean for black holes?). Universe 2, 1–34 (2016)

  32. He, X.-G., Ma, B.-Q.: Quantization of black holes. Mod. Phys. Lett. A 26, 2299–2304 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Verlinde, E.P.: On the origin of gravity and the laws of Newton. JHEP 1194, 029 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Bekenstein, J.D.: Black holes and entropy. Phys. Rev. D 7, 2333 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  35. Munkhammar, J.: Is holographic entropy and gravity the results of quantum mechanics? arXiv:1003.1262

  36. Kamalov, T.F.: Model of extended mechanics and non-local hidden variables for quantum theory. J. Russ. Laser Res. 30, 466–471 (2009)

    Article  Google Scholar 

  37. Kamalov, T.F.: Axiomatization of mechanics. Quant. Comp. Comput. 11, 52–57 (2011)

    Google Scholar 

  38. Kamalov, T.F.: Classical and quantum-mechanical axioms with the higher time derivative formalism. J. Phys. Conf. Ser. 442, 012051 (2013). (4 pages)

    Article  Google Scholar 

  39. Kamalov, T.F.: Simulations the nuclear interaction. In: Proceed. of the 13th Lomonosov Conference on Elementary Particle Physics, 23–29 Aug 2007: Particle Physics on the Eve of LHC, pp. 439–442 (2009). https://doi.org/10.1142/9789812837592_0076

  40. Kamalov, T.F.: Physics of non-inertial reference frames. AIP Conf. Proc. 1316, 455–458 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The author is indebted to the anonymous referees for their useful comments and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rami Ahmad El-Nabulsi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Nabulsi, R.A. Nonlocal generalized uncertainty principle and its implications in gravity and entropic Verlinde holographic approach. Quantum Stud.: Math. Found. 6, 235–240 (2019). https://doi.org/10.1007/s40509-019-00181-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40509-019-00181-x

Keywords

Navigation