Skip to main content
Log in

Biochemical and physiological response to oxidative stress in cultivated sugarcane and wild genera

  • Original Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Sugarcane related genera and species exhibit tolerance to a number of abiotic stresses. In the present study, oxidative stress response was compared between Saccharum sp and their related genera using physiological and biochemical parameters. A pot culture experiment was conducted using five clones of Erianthus arundinaceus and two commercial varieties of Saccharum hybrids. The oxidative stress was induced by external application of hydrogen peroxide (H2O2) at different concentrations (control, 300, 500, 1000 ppm) on 65 days—old plants for three consecutive days in a glass house. Adaptive response in sugarcane/wild genera was estimated in terms of chlorophyll fluorescence, chlorophyll stability index, proline, soluble protein, and reactive oxygen species scavenging enzyme activities like super oxide dismutase and peroxidase. Analysis of variance was performed and significance of each group was verified with three-way analysis of variance (chlorophyll fluorescence, peroxidase, superoxide dismutase, lipid peroxidation, protein and proline content) and two way analysis of variance (chlorophyll stability index,) followed by Tukey HSD (P < 0.05). Significant interaction between clones, H2O2 treatment and time interval was observed. Two clones of Erianthus sp (IJ76-389 and IK76-91) exhibited relatively higher tolerance for oxidative stress at 500 and 1000 ppm of H2O2 with 48 h of treatment. In Erianthus sp, the percentage increase in enzyme activity was significant; the clone IS76-139 showed maximum peroxidase (60.9% increase) and super oxide dismutase activity (189.3% increase). Cell membrane damage due to lipid peroxidation has increased with increase in concentration of H2O2. Drought tolerant sugarcane variety Co 99004 showed 50.5% reduction in lipid peroxidation when compared to the variety Co 86032. Based on physiological and biochemical response, the effective concentration to induce the oxidative stress was found to be 500 ppm at 48 h after treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

SOD:

Superoxide dismutase

POX:

Peroxidase

MDA:

Malondialdehyde

NBT:

Nitroblue tetrazolium

TBA:

Thiobarbituric acid

ROS:

Reactive oxygen species

BSA:

Bovine serum albumin

LPO:

Lipid peroxidation

Fr.wt:

Fresh weight

References

  • Arisi, A. M., Cornic, G., Jouanin, L., & Foyer, C. H. (1998). Overexpression of iron superoxide dismutase in transformed poplar modifies the regulation of photosynthesis at low CO2 partial pressures or following exposure to the prooxidant herbicide methyl viologen. Plant Physiology, 117, 565–574.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bates, L. S., Waldeen, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205–207.

    Article  CAS  Google Scholar 

  • Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44, 276–287.

    Article  PubMed  CAS  Google Scholar 

  • Bowler, C., Van Camp, W., Van Montagu, M., & Inzé, D. (1994). Superoxide dismutases in plants. Critical Reviews in Plant Science, 13, 199–218.

    Article  CAS  Google Scholar 

  • Bradford, M. M. (1976). Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Chagas, R. M., Silveira, J. A. G., Ribeiro, R. V., Vitorello, V. A., & Carrer, H. (2008). Photochemical damage and comparative performance of superoxide dismutase and ascorbate peroxidase in sugarcane leaves exposed to paraquat-induced oxidative stress. Pesticide Biochemistry and Physiology, 90, 181–188.

    Article  CAS  Google Scholar 

  • Christy, P. M., Preetha, R. D., Vasantha, S., & Divya, D. (2013). Biochemical and molecular analysis of sugarcane genotypes response to salinity and drought. International Journal of Applied Biology and Pharmaceutical Technology, 1, 210–218.

    Google Scholar 

  • Deng, X. P., Cheng, Y. J., Wu, X. B., Kwak, S. S., Chen, W., & Eneji, A. E. (2012). Exogenous hydrogen peroxide positively influences root growth and metabolism in leaves of sweet potato seedlings. Australian Journal of Crop Science, 6, 1572–1578.

    CAS  Google Scholar 

  • Elstner, E. F. (1982). Oxygen activation and oxygen toxicity. Annual Review Plant Physiology, 33, 73–96.

    Article  CAS  Google Scholar 

  • Foyer, C. H., & Noctor, G. (2005). Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell, 17, 1866–1875.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gill, S. S., & Tudeja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48, 909–930.

    Article  PubMed  CAS  Google Scholar 

  • Goemez, J. M., Hernandez, J. A., Jiménez, A., del Río, L. A., & Sevill, F. (1999). Differential response of antioxidative enzymes of chloroplasts and mitochondria to long-term NaCl stress of pea plants. Free Radical Research, 31, S11–S18.

    Article  Google Scholar 

  • Gomathi, R., Manohari, G., & Rakkiyappan, P. (2012). Antioxidant enzymes on cell membrane integrity of sugarcane varieties differing in flooding tolerance. Sugar Tech, 14, 261–265.

    Article  CAS  Google Scholar 

  • Gosset, D. R., Banks, S. W., Millhollon, E. P., & Lucas, M. C. (1996). Antioxidant response to NaCl stress in a control and an NaCl-tolerant cotton cell line grown in the presence of paraquat, but lionine sulfoximine and exogenous glutathione. Plant Physiology, 112, 803–809.

    Article  CAS  Google Scholar 

  • Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, 189–198.

    Article  PubMed  CAS  Google Scholar 

  • Hernández, J. A., Corpas, F. J., Gomez, M., Del Río, L. A., & Sevilla, F. (1993). Salt-induced oxidative stress mediated by activated oxygen species in pea leaf mitochondria. Physiologia Plantarum, 89, 103–110.

    Article  Google Scholar 

  • Hernandez, J. A., Jimenez, A., Mullineaux, P., & Sevilia, F. (2000). Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defences. Plant, Cell and Environment, 23, 853–862.

    Article  CAS  Google Scholar 

  • Kaur, P., Sharma, N., Kumar, M., & Kaur, S. (2014). Changes in growth and antioxidative enzyme activities in Vicia faba L. seedlings under chromium stress. Indian Journal of Plant Physiology, 19(2), 101–106.

    Article  Google Scholar 

  • Koleyoreas, A. S. (1958). A new method of determining drought resistance. Plant Physiology, 33, 232–233.

    Article  Google Scholar 

  • Kumari, M., Dass, S., Vimala, T., & Arora, P. (2004). Physiological parameters governing drought tolerance in maize. Indian Journal of Plant Physiology, 9, 203–207.

    Google Scholar 

  • Liang, X., Zhang, L. U., Natarajan, S. K., & Becker, D. F. (2013). Proline mechanism of stress survival. Antioxidants & Redox Signaling. https://doi.org/10.1089/ars.2012.5074.

    Article  Google Scholar 

  • Malik, E. P., & Singh, M. B. (1980). Plant enzymology and hittoenzymology (1st ed., Vol. 286). New Delhi: Kalyani Publishers.

    Google Scholar 

  • Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence-a practical guide. Journal of Experimental Botany, 51, 659–668.

    Article  PubMed  CAS  Google Scholar 

  • Mohan, M. M., Narayana, S. L., & Ibrahim, S. M. (2000). Chlorophyll stability index (CSI): Its impact on salt tolerance in rice. International Rice Research Notes, 25, 38–39.

    Google Scholar 

  • Noctor, G., & Foyer, C. (1998). Ascorbate and glutathione: Keeping active oxygen under control. Annual Review of Plant Physiology, 49, 249–279.

    Article  CAS  Google Scholar 

  • Prasad, T. K., Anderson, Marc D., Martin, B. A., & Steward, C. R. (1994). Evidence for chilling induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell, 6, 65–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pujari, D. S., & Chanda, S. V. (2002). Effect of salinity stress on growth, peroxidase and IAA oxidase activities in vigna seedlings. Acta Physiologiae Plantarum, 24(4), 435–439.

    Article  CAS  Google Scholar 

  • Sadasivam, S., & Manickam, A. (1996). Methods in biochemistry (pp. 108–110). New Delhi: New Age International Pvt. Ltd.

    Google Scholar 

  • Sairam, R. K., Deshmukh, P. S., & Saxena, D. C. (1998). Role of antioxidant systems in wheat genotypes tolerance to water stress. Biologia Plantarum, 41, 387–394.

    Article  CAS  Google Scholar 

  • Sairam, R. K., & Srivastava, G. C. (2000). Induction of oxidative stress and antioxidant activity by hydrogen peroxide treatment in tolerant and susceptible wheat genotypes. Biologia Plantarum, 43(3), 381–386.

    Article  CAS  Google Scholar 

  • Santos, C. M., & Silva, M. A. (2015). Physiological and biochemical responses of sugarcane to oxidative stress induced by water deficit and paraquat. Acta Physiologiae Plantarum, 37, 172. https://doi.org/10.1007/s11738-015-1935-3.

    Article  CAS  Google Scholar 

  • Savouré, A., Thorin, D., Davey, M., Hua, X. J., Mauro, S., Van Montagu, M., et al. (1999). NaCl and CuZnSO4 treatments trigger distinct oxidative defence mechanism in Nicotiana plumbaginifolia L. Plant, Cell and Environment, 22, 387–396.

    Article  Google Scholar 

  • Shinozaki, K., Yamaguchi-Shinozaki, K., & Seki, M. (2003). Regulatory network of gene expression in the drought and cold stress responses. Current Opinion in Plant Biology, 6, 410–417.

    Article  PubMed  CAS  Google Scholar 

  • Sumesh, K. V., Sharma-Natu, P., & Ghildiyal, M. C. (2008). Starch synthase activity and heatshock protein in relation to thermal tolerance of developing wheat grains. Biologia Plantarum, 52, 749–753.

    Article  CAS  Google Scholar 

  • Upadhyaya, H., Khan, M. H., & Panda, S. K. (2007). Hydrogen peroxide induces oxidative stress in detached leaves of Oryza sativa L. General and Applied Plant Physiology, 33(1–2), 83–95.

    CAS  Google Scholar 

  • Van Toai, T. T., & Bolles, C. S. (1991). Post-anoxic injury in soybean (Glycine max) seedlings. Plant Physiology, 9, 588–592.

    Google Scholar 

  • Vijayalakshmi, D., Srividhya, S., Muthulakshmi, S., & Satishraj, R. (2014). Induction of oxidative stress by hydrogen peroxide treatment in rice genotypes to study the osmolyte accumulation pattern and antioxidant capacity. Journal of Stress Physiology & Biochemistry, 10(3), 37–46.

    Google Scholar 

  • Xu, S., Li, J., Zhang, X., Wei, H., & Cui, L. (2006). Effects of heat acclimation pre-treatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turf grass species under heat stress. Environmental and Experimental Botany, 56, 274–285.

    Article  CAS  Google Scholar 

  • Yin, H., Chen, Q. M., & Yi, M. F. (2008). Effects of short-term heat stress on oxidative damage and responses of antioxidant system in Lilium longiflorum. Plant Growth Regulation, 54, 45–54.

    Article  CAS  Google Scholar 

  • You, J., & Chang, Z. (2015). ROS regulation during abiotic stress response in crop plants. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2015.01092.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan, Y., Qian, H., Yu, Y., Lian, F., & Tang, D. (2011). Thermo-tolerance and antioxidant response induced by heat acclimation in Freesia seedlings. Acta Physiologiae Plantarum, 33, 1001–1009.

    Article  CAS  Google Scholar 

  • Zlatev, Z. S., Lidon, F. C., Ramalho, J. C., & Yordanov, I. T. (2006). Comparison of resistance to drought of three bean cultivars. Biologia Plantarum, 50, 389–394.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the Indian Council of Agriculture Research (ICAR) for the funding and authors thank Director, ICAR – SBI for support and facilities.

Author information

Authors and Affiliations

Authors

Contributions

JN, MG and RM: conducted the experiments and written the MS. RG, RA and AS analyzed the data.

Corresponding author

Correspondence to R. Manimekalai.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manimekalai, R., Narayanan, J., Gokul, M. et al. Biochemical and physiological response to oxidative stress in cultivated sugarcane and wild genera. Ind J Plant Physiol. 23, 261–270 (2018). https://doi.org/10.1007/s40502-018-0368-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-018-0368-6

Keywords

Navigation