Skip to main content

Advertisement

Log in

Periodontal Medicine—New Diagnostic Opportunities

  • Systemic Diseases (M Bartold, section editor)
  • Published:
Current Oral Health Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

We examined the literature on periodontal medicine to determine how this field has influenced the diagnosis of periodontal diseases and the search for biomarkers in oral fluids.

Recent Findings

Periodontal medicine has pushed the boundaries of biomarker discovery in oral fluids, where several analytes present in serum can be detected and potentially explored for the diagnosis of systemic conditions. The study of mechanisms linking oral and systemic diseases has also contributed to advances in our understanding of systemic modulation of the subgingival microenvironment and its effects on gingival crevicular fluid components and the local microbiota.

Summary

Recent technological advances in “omics” platforms allow us to examine concomitantly functional changes that occur in the host and the resident microbiota during disease processes. Integration of multi-omics data such as the one proposed by the Integrative Human Microbiome Project will afford new insights into the interplay between oral and systemic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Offenbacher S. Periodontal diseases: pathogenesis. Ann Periodontol. 1996;1(1):821–78.

    Article  CAS  PubMed  Google Scholar 

  2. Van Dyke TE, van Winkelhoff AJ. Infection and inflammatory mechanisms. J Clin Periodontol. 2013;40(Suppl 14):S1–7. doi:10.1111/jcpe.12088.

    PubMed  Google Scholar 

  3. Southerland JH, Taylor GW, Moss K, Beck JD, Offenbacher S. Commonality in chronic inflammatory diseases: periodontitis, diabetes, and coronary artery disease. Periodontol. 2006;40:130–43. doi:10.1111/j.1600-0757.2005.00138.x.

    Article  Google Scholar 

  4. Giannobile WV, McDevitt JT, Niedbala RS, Malamud D. Translational and clinical applications of salivary diagnostics. Adv Dent Res. 23(4):375–80. doi:10.1177/0022034511420434.

  5. Wong DT. Salivaomics. J Am Dent Assoc. 2012;143(10 Suppl):19s–24s.

    Article  PubMed  Google Scholar 

  6. Hefti AF. Periodontal probing. Crit Rev Oral Biol Med. 1997;8(3):336–56.

    Article  CAS  PubMed  Google Scholar 

  7. Haffajee AD, Socransky SS, Goodson JM. Clinical parameters as predictors of destructive periodontal disease activity. J Clin Periodontol. 1983;10(3):257–65.

    Article  CAS  PubMed  Google Scholar 

  8. Grossi SG, Dunford RG, Ho A, Koch G, Machtei EE, Genco RJ. Sources of error for periodontal probing measurements. J Periodontal Res. 1996;31(5):330–6.

    Article  CAS  PubMed  Google Scholar 

  9. Espeland MA, Zappa UE, Hogan PE, Simona C, Graf H. Cross-sectional and longitudinal reliability for clinical measurement of attachment loss. J Clin Periodontol. 1991;18(2):126–33.

    Article  CAS  PubMed  Google Scholar 

  10. Beck JD, Offenbacher S. Relationships among clinical measures of periodontal disease and their associations with systemic markers. Ann Periodontol. 2002;7(1):79–89. doi:10.1902/annals.2002.7.1.79.

    Article  PubMed  Google Scholar 

  11. Ide M, Papapanou PN. Epidemiology of association between maternal periodontal disease and adverse pregnancy outcomes—systematic review. J Periodontol. 2013;84(4 Suppl):S181–94. doi:10.1902/jop.2013.134009.

    PubMed  Google Scholar 

  12. Linden GJ, Lyons A, Scannapieco FA. Periodontal systemic associations: review of the evidence. J Clin Periodontol. 2013;40(Suppl 14):S8–19. doi:10.1111/jcpe.12064.

    PubMed  Google Scholar 

  13. Hujoel PP, White BA, Garcia RI, Listgarten MA. The dentogingival epithelial surface area revisited. J Periodontal Res. 2001;36(1):48–55.

    Article  CAS  PubMed  Google Scholar 

  14. Schwahn C, Volzke H, Robinson DM, Luedemann J, Bernhardt O, Gesch D, et al. Periodontal disease, but not edentulism, is independently associated with increased plasma fibrinogen levels. Results from a population-based study. Thromb Haemost. 2004;92(2):244–52. doi:10.1160/TH04-02-0092.

    CAS  PubMed  Google Scholar 

  15. Dietrich T, Jimenez M, Krall Kaye EA, Vokonas PS, Garcia RI. Age-dependent associations between chronic periodontitis/edentulism and risk of coronary heart disease. Circulation. 2008;117(13):1668–74. doi:10.1161/CIRCULATIONAHA.107.711507.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nesse W, Abbas F, van der Ploeg I, Spijkervet FK, Dijkstra PU, Vissink A. Periodontal inflamed surface area: quantifying inflammatory burden. J Clin Periodontol. 2008;35(8):668–73. doi:10.1111/j.1600-051X.2008.01249.x.

    Article  PubMed  Google Scholar 

  17. Offenbacher S, Barros SP, Singer RE, Moss K, Williams RC, Beck JD. Periodontal disease at the biofilm-gingival interface. J Periodontol. 2007;78(10):1911–25. doi:10.1902/jop.2007.060465.

    Article  CAS  PubMed  Google Scholar 

  18. Ebersole JL, Cappelli D. Acute-phase reactants in infections and inflammatory diseases. Periodontol. 2000;23:19–49.

    Article  CAS  Google Scholar 

  19. Libby P. Inflammation in atherosclerosis. Nature. 2002;420(6917):868–74. doi:10.1038/nature01323.

    Article  CAS  PubMed  Google Scholar 

  20. Pearson TA, Mensah GA, Alexander RW, Anderson JL, Cannon 3rd RO, Criqui M, et al. Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation. 2003;107(3):499–511.

    Article  PubMed  Google Scholar 

  21. Paraskevas S, Huizinga JD, Loos BG. A systematic review and meta-analyses on C-reactive protein in relation to periodontitis. J Clin Periodontol. 2008;35(4):277–90. doi:10.1111/j.1600-051X.2007.01173.x.

    Article  CAS  PubMed  Google Scholar 

  22. Yoshii S, Tsuboi S, Morita I, Takami Y, Adachi K, Inukai J, et al. Temporal association of elevated C-reactive protein and periodontal disease in men. J Periodontol. 2009;80(5):734–9. doi:10.1902/jop.2009.080537.

    Article  CAS  PubMed  Google Scholar 

  23. Loos BG. Systemic markers of inflammation in periodontitis. J Periodontol. 2005;76(11 Suppl):2106–15. doi:10.1902/jop.2005.76.11-S.2106.

    Article  PubMed  Google Scholar 

  24. Buhlin K, Hultin M, Norderyd O, Persson L, Pockley AG, Rabe P, et al. Risk factors for atherosclerosis in cases with severe periodontitis. J Clin Periodontol. 2009;36(7):541–9. doi:10.1111/j.1600-051X.2009.01430.x.

    Article  CAS  PubMed  Google Scholar 

  25. D'Aiuto F, Orlandi M, Gunsolley JC. Evidence that periodontal treatment improves biomarkers and CVD outcomes. J Clin Periodontol. 2013;40(Suppl 14):S85–105. doi:10.1111/jcpe.12061.

    Article  PubMed  Google Scholar 

  26. Ioannidou E, Malekzadeh T, Dongari-Bagtzoglou A. Effect of periodontal treatment on serum C-reactive protein levels: a systematic review and meta-analysis. J Periodontol. 2006;77(10):1635–42. doi:10.1902/jop.2006.050443.

    Article  CAS  PubMed  Google Scholar 

  27. Freitas CO, Gomes-Filho IS, Naves RC, Nogueira Filho Gda R, Cruz SS, Santos CA, et al. Influence of periodontal therapy on C-reactive protein level: a systematic review and meta-analysis. J Appl Oral Sci. 2012;20(1):1–8.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Teles R, Wang CY. Mechanisms involved in the association between periodontal diseases and cardiovascular disease. Oral Dis. 2011;17(5):450–61. doi:10.1111/j.1601-0825.2010.01784.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Teles RP, Likhari V, Socransky SS, Haffajee AD. Salivary cytokine levels in subjects with chronic periodontitis and in periodontally healthy individuals: a cross-sectional study. J Periodontal Res. 2009;44(3):411–7. doi:10.1111/j.1600-0765.2008.01119.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yoshizawa JM, Schafer CA, Schafer JJ, Farrell JJ, Paster BJ, Wong DT. Salivary biomarkers: toward future clinical and diagnostic utilities. Clin Microbiol Rev. 2013;26(4):781–91. doi:10.1128/cmr.00021-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang Y, Sun J, Lin CC, Abemayor E, Wang MB, Wong DT. The emerging landscape of salivary diagnostics. Periodontol. 2016;70(1):38–52. doi:10.1111/prd.12099.

    Article  Google Scholar 

  32. Browne RW, Kantarci A, LaMonte MJ, Andrews CA, Hovey KM, Falkner KL, et al. Performance of multiplex cytokine assays in serum and saliva among community-dwelling postmenopausal women. PLoS One. 2013;8(4):e59498. doi:10.1371/journal.pone.0059498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ebersole JL, Kryscio RJ, Campbell C, Kinane DF, McDevitt J, Christodoulides N, et al. Salivary and serum adiponectin and C-reactive protein levels in acute myocardial infarction related to body mass index and oral health. J Periodontal Res. 2016; doi:10.1111/jre.12406.

    Google Scholar 

  34. Redman RS, Kerr GS, Payne JB, Mikuls TR, Huang J, Sayles HR, et al. Salivary and serum procalcitonin and C-reactive protein as biomarkers of periodontitis in United States veterans with osteoarthritis or rheumatoid arthritis. Biotech Histochem. 2016;91(2):77–85. doi:10.3109/10520295.2015.1082625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gumus P, Emingil G, Ozturk VO, Belibasakis GN, Bostanci N. Oxidative stress markers in saliva and periodontal disease status: modulation during pregnancy and postpartum. BMC Infect Dis. 2015;15:261. doi:10.1186/s12879-015-1003-z.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lamster IB, Ahlo JK. Analysis of gingival crevicular fluid as applied to the diagnosis of oral and systemic diseases. Ann N Y Acad Sci. 2007;1098:216–29. doi:10.1196/annals.1384.027.

    Article  PubMed  Google Scholar 

  37. Wassall RR, Preshaw PM. Clinical and technical considerations in the analysis of gingival crevicular fluid. Periodontol. 2016;70(1):65–79. doi:10.1111/prd.12109.

    Article  Google Scholar 

  38. Back M, Airila-Mansson S, Jogestrand T, Soder B, Soder PO. Increased leukotriene concentrations in gingival crevicular fluid from subjects with periodontal disease and atherosclerosis. Atherosclerosis. 2007;193(2):389–94. doi:10.1016/j.atherosclerosis.2006.07.003.

    Article  PubMed  Google Scholar 

  39. Shah R, Thomas R, Mehta DS. Oxidized-low density lipoprotein in gingival crevicular fluid of patients with chronic periodontitis: a possible link to atherogenesis. Acta Odontol Scand. 2014;72(2):154–6. doi:10.3109/00016357.2013.810772.

    Article  CAS  PubMed  Google Scholar 

  40. Chen H, Zheng P, Zhu H, Zhu J, Zhao L, El Mokhtari NE, et al. Platelet-activating factor levels of serum and gingival crevicular fluid in nonsmoking patients with periodontitis and/or coronary heart disease. Clin Oral Investig. 2010;14(6):629–36. doi:10.1007/s00784-009-0346-5.

    Article  PubMed  Google Scholar 

  41. Hayashi S, Yamada H, Fukui M, Ito HO, Sata M. Correlation between arteriosclerosis and periodontal condition assessed by lactoferrin and alpha1-antitrypsin levels in gingival crevicular fluid. Int Heart J. 2015;56(6):639–43. doi:10.1536/ihj.15-218.

    Article  CAS  PubMed  Google Scholar 

  42. Wytrykowska A, Prosba-Mackiewicz M, Nyka WM. IL-1beta, TNF-alpha, and IL-6 levels in gingival fluid and serum of patients with ischemic stroke. J Oral Sci. 2016;58(4):509–13. doi:10.2334/josnusd.16-0278.

    Article  PubMed  Google Scholar 

  43. Tuter G, Kurtis B, Serdar M. Evaluation of gingival crevicular fluid and serum levels of high-sensitivity C-reactive protein in chronic periodontitis patients with or without coronary artery disease. J Periodontol. 2007;78(12):2319–24. doi:10.1902/jop.2007.070150.

    Article  CAS  PubMed  Google Scholar 

  44. Fitzsimmons TR, Sanders AE, Bartold PM, Slade GD. Local and systemic biomarkers in gingival crevicular fluid increase odds of periodontitis. J Clin Periodontol. 2010;37(1):30–6. doi:10.1111/j.1600-051X.2009.01506.x.

    Article  CAS  PubMed  Google Scholar 

  45. Megson E, Fitzsimmons T, Dharmapatni K, Bartold PM. C-reactive protein in gingival crevicular fluid may be indicative of systemic inflammation. J Clin Periodontol. 2010;37(9):797–804. doi:10.1111/j.1600-051X.2010.01603.x.

    Article  CAS  PubMed  Google Scholar 

  46. Sorsa T, Mantyla P, Ronka H, Kallio P, Kallis GB, Lundqvist C, et al. Scientific basis of a matrix metalloproteinase-8 specific chair-side test for monitoring periodontal and peri-implant health and disease. Ann N Y Acad Sci. 1999;878:130–40.

    Article  CAS  PubMed  Google Scholar 

  47. Mantyla P, Stenman M, Kinane DF, Tikanoja S, Luoto H, Salo T, et al. Gingival crevicular fluid collagenase-2 (MMP-8) test stick for chair-side monitoring of periodontitis. J Periodontal Res. 2003;38(4):436–9.

    Article  PubMed  Google Scholar 

  48. Uitto VJ, Overall CM, McCulloch C. Proteolytic host cell enzymes in gingival crevice fluid. Periodontol. 2003;31:77–104.

    Article  Google Scholar 

  49. Herman MP, Sukhova GK, Libby P, Gerdes N, Tang N, Horton DB, et al. Expression of neutrophil collagenase (matrix metalloproteinase-8) in human atheroma: a novel collagenolytic pathway suggested by transcriptional profiling. Circulation. 2001;104(16):1899–904.

    Article  CAS  PubMed  Google Scholar 

  50. Blankenberg S, Rupprecht HJ, Poirier O, Bickel C, Smieja M, Hafner G, et al. Plasma concentrations and genetic variation of matrix metalloproteinase 9 and prognosis of patients with cardiovascular disease. Circulation. 2003;107(12):1579–85. doi:10.1161/01.CIR.0000058700.41738.12.

    Article  CAS  PubMed  Google Scholar 

  51. Tuomainen AM, Nyyssonen K, Laukkanen JA, Tervahartiala T, Tuomainen TP, Salonen JT, et al. Serum matrix metalloproteinase-8 concentrations are associated with cardiovascular outcome in men. Arterioscler Thromb Vasc Biol. 2007;27(12):2722–8. doi:10.1161/ATVBAHA.107.154831.

    Article  CAS  PubMed  Google Scholar 

  52. Brown DL, Desai KK, Vakili BA, Nouneh C, Lee HM, Golub LM. Clinical and biochemical results of the metalloproteinase inhibition with subantimicrobial doses of doxycycline to prevent acute coronary syndromes (MIDAS) pilot trial. Arterioscler Thromb Vasc Biol. 2004;24(4):733–8. doi:10.1161/01.ATV.0000121571.78696.dc.

    Article  CAS  PubMed  Google Scholar 

  53. • Bench TJ, Jeremias A, Brown DL. Matrix metalloproteinase inhibition with tetracyclines for the treatment of coronary artery disease. Pharmacol Res. 2011;64(6):561–6. doi:10.1016/j.phrs.2011.05.002. This paper reviews how our current understanding of the role of MMPs in the pathogenesis of atherosclerosis led to the testing of the effects of low-dose doxycycline, a drug that has been used to control periodontal disease progression, on patients with coronary artery disease. The authors summarize the results of the Metalloproteinase Inhibition with subantimicrobial dose Doxycycline to prevent Acute coronary Syndromes (MIDAS) trial, which demonstrated a 46% reduction in CRP levels, and a 54% reduction in MMP-9 activity. Of interest, the 46% reduction in CRP levels occurred in patients who were already taking statins, which also reduces CRP.

    Article  CAS  PubMed  Google Scholar 

  54. Tuter G, Kurtis B, Serdar M, Aykan T, Okyay K, Yucel A, et al. Effects of scaling and root planing and sub-antimicrobial dose doxycycline on oral and systemic biomarkers of disease in patients with both chronic periodontitis and coronary artery disease. J Clin Periodontol. 2007;34(8):673–81. doi:10.1111/j.1600-051X.2007.01104.x.

    Article  CAS  PubMed  Google Scholar 

  55. Golub LM, Lee HM, Stoner JA, Sorsa T, Reinhardt RA, Wolff MS, et al. Subantimicrobial-dose doxycycline modulates gingival crevicular fluid biomarkers of periodontitis in postmenopausal osteopenic women. J Periodontol. 2008;79(8):1409–18. doi:10.1902/jop.2008.070623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Payne JB, Golub LM, Stoner JA, Lee HM, Reinhardt RA, Sorsa T, et al. The effect of subantimicrobial-dose-doxycycline periodontal therapy on serum biomarkers of systemic inflammation: a randomized, double-masked, placebo-controlled clinical trial. J Am Dent Assoc. 2011;142(3):262–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Han YW, Wang X. Mobile microbiome: oral bacteria in extra-oral infections and inflammation. J Dent Res. 2013;92(6):485–91. doi:10.1177/0022034513487559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cairo F, Gaeta C, Dorigo W, Oggioni MR, Pratesi C, Pini Prato GP, et al. Periodontal pathogens in atheromatous plaques. A controlled clinical and laboratory trial. J Periodontal Res. 2004;39(6):442–6. doi:10.1111/j.1600-0765.2004.00761.x.

    Article  CAS  PubMed  Google Scholar 

  59. Ford PJ, Gemmell E, Chan A, Carter CL, Walker PJ, Bird PS, et al. Inflammation, heat shock proteins and periodontal pathogens in atherosclerosis: an immunohistologic study. Oral Microbiol Immunol. 2006;21(4):206–11. doi:10.1111/j.1399-302X.2006.00276.x.

    Article  CAS  PubMed  Google Scholar 

  60. Wang X, Buhimschi CS, Temoin S, Bhandari V, Han YW, Buhimschi IA. Comparative microbial analysis of paired amniotic fluid and cord blood from pregnancies complicated by preterm birth and early-onset neonatal sepsis. PLoS One. 2013;8(2):e56131. doi:10.1371/journal.pone.0056131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Martinez-Martinez RE, Abud-Mendoza C, Patino-Marin N, Rizo-Rodriguez JC, Little JW, Loyola-Rodriguez JP. Detection of periodontal bacterial DNA in serum and synovial fluid in refractory rheumatoid arthritis patients. J Clin Periodontol. 2009;36(12):1004–10. doi:10.1111/j.1600-051X.2009.01496.x.

    Article  CAS  PubMed  Google Scholar 

  62. Heo SM, Sung RS, Scannapieco FA, Haase EM. Genetic relationships between Candida albicans strains isolated from dental plaque, trachea, and bronchoalveolar lavage fluid from mechanically ventilated intensive care unit patients. J Oral Microbiol. 2011;3 doi:10.3402/jom.v3i0.6362.

  63. Shinzato T, Saito A. The Streptococcus milleri group as a cause of pulmonary infections. Clin Infect Dis. 1995;21(Suppl 3):S238–43.

    Article  PubMed  Google Scholar 

  64. Miklossy J. Emerging roles of pathogens in Alzheimer disease. Expert Rev Mol Med. 2011;13:e30. doi:10.1017/S1462399411002006.

    Article  PubMed  Google Scholar 

  65. Kumar PS. From focal sepsis to periodontal medicine: a century of exploring the role of the oral microbiome in systemic disease. J Physiol. 2017;595(2):465–76. doi:10.1113/JP272427.

    Article  CAS  PubMed  Google Scholar 

  66. • Zhou M, Rong R, Munro D, Zhu C, Gao X, Zhang Q, et al. Investigation of the effect of type 2 diabetes mellitus on subgingival plaque microbiota by high-throughput 16S rDNA pyrosequencing. PLoS One. 2013;8(4):e61516. doi:10.1371/journal.pone.0061516. Using next-generation sequencing, the authors characterized the composition of the subgingival microbiota in four groups of subjects separated based on the diagnoses of diabetes and periodontitis. The study revealed that the ecological changes in the subgingival environment that accompany hyperglycemia were followed by an increase in the levels of certain species such as P. gingivalis , T. medium , T. forsythia , P. endodontalis , F. alocis , and Leptotrichia spp. in periodontitis subjects. This is a novel finding because up until recently, the composition of the subgingival microbiota had not been demonstrated to be affected by diabetes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Taylor JJ, Preshaw PM, Lalla E. A review of the evidence for pathogenic mechanisms that may link periodontitis and diabetes. J Clin Periodontol. 2013;40(Suppl 14):S113–34. doi:10.1111/jcpe.12059.

    PubMed  Google Scholar 

  68. •• Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. The placenta harbors a unique microbiome. Sci Transl Med. 2014;6(237):237ra65. doi:10.1126/scitranslmed.3008599. In this study, the microbiome of the placenta was examined for the first time using metagenomics techniques. The results revealed that the placenta seems be contaminated by microorganisms from the oral microbiota such as P. tannerae . Further, the placental microbiome was associated with preterm birth <37 weeks. The use of metagenomics also allowed the investigators to estimate which high-level metabolic pathways were part of the microbiome detected in the placental samples, giving some insights into its functional potential.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Duran-Pinedo AE, Chen T, Teles R, Starr JR, Wang X, Krishnan K, et al. Community-wide transcriptome of the oral microbiome in subjects with and without periodontitis. ISME J. 2014;8(8):1659–72. doi:10.1038/ismej.2014.23.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Yost S, Duran-Pinedo AE, Teles R, Krishnan K, Frias-Lopez J. Functional signatures of oral dysbiosis during periodontitis progression revealed by microbial metatranscriptome analysis. Genome Med. 2015;7(1):27. doi:10.1186/s13073-015-0153-3.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Human Microbiome Project C. A framework for human microbiome research. Nature. 2012;486(7402):215–21. doi:10.1038/nature11209.

    Article  Google Scholar 

  72. Human Microbiome Project C. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–14. doi:10.1038/nature11234.

    Article  Google Scholar 

  73. •• Integrative HMPRNC. The Integrative Human Microbiome Project: dynamic analysis of microbiome-host omics profiles during periods of human health and disease. Cell Host Microbe. 2014;16(3):276–89. doi:10.1016/j.chom.2014.08.014. This article describes in details the projects being developed under the iHMP, which is the second phase of the HMP initiative from NIH. The paper describes the three models of microbiome-associated human conditions that will be studied in this second phase, including pregnancy and preterm birth, inflammatory bowel disease, and type 2 diabetes. Further, the multi-omic data types to be collected, integrated, and distributed through public repositories as a community resource are also described in details. The goal is to examine host-microbe interactions by analyzing microbiome and host activities in longitudinal studies. This unparalleled amount of information on how the microbiome interacts with the human host at different body sites in health and disease will allow the testing of a multitude of hypotheses about these interactions. In particular, the study on pregnancy will also obtain oral samples, providing an invaluable opportunity to examine the oral systemic link.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Teles.

Ethics declarations

Conflict of Interest

The author declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Systemic Diseases

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teles, R. Periodontal Medicine—New Diagnostic Opportunities. Curr Oral Health Rep 4, 158–166 (2017). https://doi.org/10.1007/s40496-017-0138-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40496-017-0138-y

Keywords

Navigation