Skip to main content

Advertisement

Log in

Bioactive Molecules of Endophytic Fungi and Their Potential in Anticancer Drug Development

  • Natural Products: From Chemistry to Pharmacology (C Ho, Section Editor)
  • Published:
Current Pharmacology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Endophytes such as bacteria, fungi and actinomycetes are play significant role in the production of bioactive metabolites and plant defence mechanisms. These endophytes develop asymptomatically in the inner tissues and cells of the host plant without causing any symptoms. But studies are ongoing on endophytic fungi, since many of the mycoflora endophytes are unstudied as well as widespread and highly diverse. Endophytic fungi are a large source of different types of metabolites that can be used for the treatment of various types of diseases and manufacture of drugs in the pharmaceutical industries. Recent studies have shown that endophytic fungi, through their alternative biochemical pathway in the host, and produce some anticancer compounds.

Recent Findings

The production of novel anticancer compounds by endophytic fungi can help to reduce the amount of anticancer compounds extracted from plants and also help to reduce the loss of plant biodiversity. As per observation, every plant examined to date has a flora of at least one endophyte and, in the case of woody plants, more than a hundred species of endophytic fungi may be present in different parts of the plant. Endophytic fungi are the best producer of many bioactive anticancer compounds, such as taxol, podophyllotoxin, camptothecin and their derivatives.

Summary

The present review focuses on biosynthesis of anticancer bioactive compounds from endophytic fungi. Furthermore, it explains the mechanism of action of the anticancer compounds and their application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schulz B, Boyle C, Draeger S, RÖMmert AK, Krohn K. Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res. 2002;106:996–1004. https://doi.org/10.1017/S0953756202006342.

    Article  CAS  Google Scholar 

  2. Strobel G, Daisy B, Castillo U, Harper J. Natural products from endophytic microorganisms. J Nat Prod. 2004;67:257–68. https://doi.org/10.1021/np030397v.

    Article  CAS  PubMed  Google Scholar 

  3. Kusari S, Spiteller M. In: Roessner U, editor. Metabolomics of endophytic fungi producing associated plant secondary metabolites: progress, challenges and opportunities, in Metabolomics. Rijeka: InTech; 2012. p. 241–66.

    Google Scholar 

  4. Sandhu SS, Kumar S, Aharwal RP, Shukla H, Rajak RC. Endophytic fungi: as a source of antimicrobials bioactive compounds. World J Phar Pharma Sci. 2014;3:1179–97.

    Google Scholar 

  5. Rai M, Rathod D, Agarkar G, Dar M, Brestic M, Pastore GM, et al. Fungal growth promotor endophytes: a pragmatic approach towards sustainable food and agriculture. Symbiosis. 2014;62:63–79. https://doi.org/10.1007/s13199-014-0273-3.

    Article  CAS  Google Scholar 

  6. Jia M, Chen L, Xin HL, Zheng CJ, Rahman K, Han T, et al. A friendly relationship between endophytic fungi and medicinal plants: a systematic review. Front Microbiol. 2016;7:906. https://doi.org/10.3389/fmicb.2016.00906.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Aharwal RP, Kumar S, Sandhu SS. Endophytic mycoflora as a source of bio-therapeutic compounds for disease treatment. J Appl Pharm Sci. 2016;6:242–54. https://doi.org/10.7324/JAPS.2016.601034.

    Article  CAS  Google Scholar 

  8. Tan RX, Zou WX. Endophytes: a rich source of functional metabolites. Nat Prod Rep. 2001;18:448–59. https://doi.org/10.1039/b100918o.

    Article  CAS  PubMed  Google Scholar 

  9. Stierle A, Strobel G, Stierle D. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science. 1993;260:214–6. https://doi.org/10.1126/science.8097061.

    Article  CAS  PubMed  Google Scholar 

  10. Demain AL, Vaishnav P. Natural products for cancer chemotherapy. Microb Biotechnol. 2011;4:687–99. https://doi.org/10.1111/j.1751-7915.2010.00221.x.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tabata H. Production of paclitaxel and the related taxanes by cell suspension cultures of Taxus species. Curr Drug Targets. 2006;7:453–61. https://doi.org/10.2174/138945006776359368.

    Article  CAS  PubMed  Google Scholar 

  12. Flores-Bustamante ZR, Rivera-Orduña FN, Martínez-Cárdenas A, Flores-Cotera LB. Microbial paclitaxel: advances and perspectives. J Antibiot. 2010;63:460467. https://doi.org/10.1038/ja.2010.83.

    Article  CAS  Google Scholar 

  13. Venugopalan A, Srivastava S. Endophytes as in vitro production platforms of high value plant secondary metabolites. Biotechnol Adv. 2015;33:873–87. https://doi.org/10.1016/j.biotechadv.2015.07.004.

    Article  PubMed  Google Scholar 

  14. Qiao W, Ling F, Yu L, Huang Y, Wang T. Enhancing taxol production in a novel endophytic fungus, Aspergillus aculeatinus Tax- 6, isolated from Taxus chinensis var. mairei. Fungal Biol. 2017;121:1037–44. https://doi.org/10.1016/j.funbio.2017.08.011.

    Article  CAS  PubMed  Google Scholar 

  15. Mirjalili MH, Farzaneh M, Bonfill M, Rezadoost H, Ghassempour A. Isolation and characterization of Stemphylium sedicola SBU-16 as a new endophytic taxol-producing fungus from Taxus baccata grown in Iran. FEMS Microbiol Lett. 2012;328(2):122–9. https://doi.org/10.1111/j.1574-6968.2011.02488.x.

    Article  CAS  PubMed  Google Scholar 

  16. Zaiyou J, Hongsheng W, Ning W, Li M, Guifang X. Isolation and identification of an endophytic fungus producing paclitaxel from Taxus wallichiana var. mairei. Nutr Hosp. 2015;32:2932–7. https://doi.org/10.3305/nh.2015.32.6.9781.

    Article  PubMed  Google Scholar 

  17. Zaiyou J, Li M, Xiqiao H. An endophytic fungus efficiently producing paclitaxel isolated from Taxus wallichiana var. mairei. Medicine. 2017;96:e7406. https://doi.org/10.1097/MD.0000000000007406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gond SK, Kharwar RN, White JF Jr. Will fungi be the new source of the blockbuster drug taxol? Fungal Biol Reviews. 2014;28:77–84.

    Google Scholar 

  19. Pandi M, Kumaran RS, Choi Y-K, Kim HJ, Muthumary J. Isolation and detection of taxol, an anticancer drug produced from Lasiodiplodia theobromae, an endophytic fungus of the medicinal plant Morinda citrifolia. Afr J Biotechnol. 2011;10:1428–35.

    CAS  Google Scholar 

  20. Schiff PB, Fant J, Horwitz SB. Promotion of microtubule assembly in vitro by taxol. Nature. 1979;277:665. https://doi.org/10.1038/277665a0.

    Article  CAS  PubMed  Google Scholar 

  21. Horwitz SB, Lothstein L, Manfredi JJ, Mellado W, Parness J, Roy SN, et al. Taxol: mechanisms of action and resistance. Ann N Y Acad Sci. 1986;466:733–44.

    CAS  PubMed  Google Scholar 

  22. Weaver BA. How taxol/paclitaxel kills cancer cells. Mol Biol Cell. 2014;25:2677–81. https://doi.org/10.1091/mbc.E14-04-0916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kampan NC, Madondo MT, McNally OM, Quinn M, Plebanski M. Paclitaxel and its evolving role in the management of ovarian cancer. Biomed Res Int. 2015;2015:413076. https://doi.org/10.1155/2015/413076.

  24. Lau DH, Xue L, Young LJ, Burke PA, Cheung AT. Paclitaxel (Taxol): an inhibitor of angiogenesis in a highly vas-cularized transgenic breast cancer. Cancer Biother Radiopharm. 1999;14(1):31–3610.

    CAS  PubMed  Google Scholar 

  25. Lissoni P, Fugamalli E, Malugani F, Ardizzoia A, Secondino S, Tancini G, et al. Chemotherapy and angiogenesis inadvanced cancer: vascular endothelial growth factor (VEGF) decline as predictor of disease control during taxol therapy inmetastatic breast cancer. Int J Biol Markers. 2000;15(4):308–11.

    CAS  PubMed  Google Scholar 

  26. Guo L, Burke P, Lo SH, Gandour-Edwards R, Lau D. Quantitative analysis of angiogenesis using confocal laser scan-ning microscopy. Angiogenesis. 2001;4(3):187–91.

    CAS  PubMed  Google Scholar 

  27. Myoung H, Hong SD, Kim YY, Hong SP, Kim MJ. Evaluation of the anti-tumor and anti-angiogenic effect of pac-litaxel and thalidomide on the xenotransplanted oral squamous cell carcinoma. Cancer Lett. 2001;163(2):191–200.

    CAS  PubMed  Google Scholar 

  28. Li W, Tang Y-X, Wan L, Cai J-H, Zhang J. Effects of combining taxol and cyclooxygenase inhibitors on the angiogenesis and apoptosis in human ovarian cancer xenografts. Oncol Lett. 2013;5(3):923–8.

    CAS  PubMed  Google Scholar 

  29. Dicker AP, Williams TL, Iliakis G, Grant DS. Targeting angiogenic processes by combination low-dose paclitaxel andradiation therapy. Am J Clin Oncol. 2003;26(3):e45–53. https://doi.org/10.1097/01.COC.0000072504.22544.3C.

    Article  PubMed  Google Scholar 

  30. Pasquier E, Carre M, Pourroy B, Camoin L, Rebai O, Briand C, et al. Antiangiogenic activity of paclitaxel is associated with its cytostatic effect, mediated by the initiation but notcompletion of a mitochondrial apoptotic signaling pathway. Mol Cancer Ther. 2004;3(10):1301–10.

    CAS  PubMed  Google Scholar 

  31. Wang F, Cao Y, Zhao WZ, Liu H, Fu Z, Han R. Taxol inhibits melanoma metastases through apoptosis induction, angiogenesis inhibition, and restoration of E-cadherin and nm23 expression. J Pharmacol Sci. 2003;93(2):197–203. https://doi.org/10.1254/jphs.93.197.

    Article  CAS  PubMed  Google Scholar 

  32. Bocci G, Francia G, Man S, Lawler J, Kerbel RS. Thrombospondin 1, a mediator of the antiangiogenic effects oflow-dose metronomic chemotherapy. Proc Natl Acad Sci USA. 2003;100(22):12917–22. https://doi.org/10.1073/pnas.213540610046.

    Article  CAS  PubMed  Google Scholar 

  33. Damber JE, Vallbo C, Albertsson P, Lennernas B, Norrby K. The anti-tumour effect of low-dose continuous chemo-therapy may partly be mediated by thrombospondin. Cancer Chemother Pharmacol. 2006;58(3):354–60. https://doi.org/10.1007/s00280-005-0163-8.

    Article  CAS  PubMed  Google Scholar 

  34. Vacca A, Ribatti D, Iurlaro M, Merchionne F, Nico B, Ria R, et al. Docetaxel versus paclitaxel for antiangio-genesis. J Hematother Stem Cell Res. 2002;11(1):103–18. https://doi.org/10.1089/152581602753448577.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang M, Tao W, Pan S, Sun X, Jiang H. Low-dosemetronomic chemotherapy of paclitaxel synergizes with cetux-imab to suppress human colon cancer xenografts. Anticancer Drugs. 2009;20(5):355–63. https://doi.org/10.1097/CAD.0b013e3283299f3630.

    Article  PubMed  Google Scholar 

  36. Stearns ME, Wang M. Effects of alendronate and taxol on PC-3 ML cell bone metastases in SCID mice. Invasion Metastasis. 1996;16(3):116–31.

    CAS  PubMed  Google Scholar 

  37. Volk-Draper L, Hall K, Griggs C, Rajput S, Kohio P, DeNardo D, et al. Paclitaxel therapy promotes breast cancer metastasis in a TLR4-dependent manner. Cancer Res. 2015;74(19):5421–34. https://doi.org/10.1158/0008-5472.CAN-14-0067.

    Article  CAS  Google Scholar 

  38. Van Maanen J, Retèl J, De Vries J, Pinedo H. Mechanism of action of antitumor drug etoposide: a review. J Nat Cancer Inst. 1988;80:1526–33.

    PubMed  Google Scholar 

  39. Kaufmann SH. Induction of endonucleolytic DNA cleavage in human acute myelogenous leukemia cells by etoposide, camptothecin, and other cytotoxic anticancer drugs: a cautionary note. Cancer Res. 1989;49:5870–8.

    CAS  PubMed  Google Scholar 

  40. Froelich-Ammon SJ, Osheroff N. Topoisomerase poisons: harnessing the dark side of enzyme mechanism. J Biol Chem. 1995;270:21429–32.

    CAS  PubMed  Google Scholar 

  41. Hande K. Etoposide: four decades of development of a topoisomerase II inhibitor. Eur J Cancer. 1998;34:1514–21.

    CAS  PubMed  Google Scholar 

  42. Pendleton M, Lindsey RH, Felix CA, Grimwade D, Osheroff N. Topoisomerase II and leukemia. Ann N Y Acad Sci. 2014;1310:98–110. https://doi.org/10.1111/nyas.12358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Eyberger AL, Dondapati R, Porter JR. Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J Nat Prod. 2006;69:1121–4. https://doi.org/10.1021/np060174f.

    Article  CAS  PubMed  Google Scholar 

  44. Stahelinand HF, von Wartburg A. The chemical and biological route from podophyllotoxin glucoside to etoposide: ninth Cain Memorial Award Lecture. Cancer Res. 1991;51:5–15.

    Google Scholar 

  45. Baldwin EL, Osheroff N. Etoposide, topoisomerase II and cancer. Curr Med Chem Anticancer Agents. 2005;5:363–72.

    CAS  PubMed  Google Scholar 

  46. Nadeem M, Ram M, Alam P, Ahmad MM, Mohammad A, Al-Qurainy F, et al. Fusarium solani, P1, a new endophytic podophyllotoxin producing fungus from roots of Podophyllum hexandrum. Afr J Microbiol Res. 2012;6:2493–9. https://doi.org/10.5897/AJMR11.1596.

    Article  CAS  Google Scholar 

  47. Wang T, Ma YX, Ye YH, Zheng HM, Zhang BW, et al. Screening and identification of endophytic fungi producing podophyllotoxin compounds in Sinopodophyllum hexandrum stems. Chinese J Exp Trad Med Formul. 2017;2:006.

    Google Scholar 

  48. Siridechakorn I, Yue Z, Mittraphab Y, Lei X, Pudhom K. Identification of spirobisnaphthalene derivatives with anti-tumor activities from the endophytic fungus Rhytidhysteron rufulum AS21B. Bioorg Med Chem. 2017;25:2878–82.

    CAS  PubMed  Google Scholar 

  49. Tan XM, Zhou YQ, Zhou XL, Xia XH, Wei Y, He LL, et al. Diversity and bioactive potential of culturable fungal endophytes of Dysosma versipellis; a rare medicinal plant endemic to China. Sci Rep. 2018;12:5929. https://doi.org/10.1038/s41598-018-24313-2.

    Article  CAS  Google Scholar 

  50. Huang JX, Zhang J, Zhang XR, Zhang K, Zhang X, He XR. Mucor fragilis as a novel source of the key pharmaceutical agents podophyllotoxin and kaempferol. Pharm Biol. 2014;52:1237–43. https://doi.org/10.3109/13880209.2014.885061.

    Article  CAS  PubMed  Google Scholar 

  51. Utsugi T, Shibata J, Sugimoto Y, Aoyagi K, Wierzba K, Kobunai T, et al. Antitumor activity of a novel podophyllotoxin derivative (TOP-53) against lung cancer and lung metastatic cancer. Cancer Res. 1996;56:2809–14.

    CAS  PubMed  Google Scholar 

  52. Abad AS, López-Pérez JL, Del Olmo E, Garcia-Fernandez LF, Francesch AS, Trigili C, et al. Synthesis and antimitotic and tubulin interaction profiles of novel pinacol derivatives of podophyllotoxins. J Med Chem. 2012;55:6724–37.

    CAS  PubMed  Google Scholar 

  53. Seidlova-Masinova V, Malinsky J, Santavy F. The biological effects of some podophyllin compounds and their dependence on chemical structure. J Natl Cancer Inst. 1957;18:359–71.

    CAS  PubMed  Google Scholar 

  54. Passarella D, Peretto B, Yepes RB, Cappelletti G, Cartelli D, Ronchi C, et al. Synthesis and biological evaluation of novel thiocolchicine–podophyllotoxin conjugates. Eur J Med Chem. 2010;45:219–26.

    CAS  PubMed  Google Scholar 

  55. Filly CM, Grah-Radford NR, Lacy JR, Heitner MA, Earnest MP. Neurologic manifestations of podophyllin toxicity. Neurology. 1982;32:308–11.

    Google Scholar 

  56. Chen JY, Tang YA, Li WS, Chiou YC, Shieh JM, Wang YC. A synthetic podophyllotoxin derivative exerts anti-cancer effects by inducing mitotic arrest and pro-apoptotic ER stress in lung cancer preclinical models. Plos One. 2013;8(4):e62082.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Guerram M, Jiang ZZ, Zhang LY. Podophyllotoxin, a medicinal agent of plant origin: past, present and future. Chin J Nat Med. 2012;10:161–9.

    CAS  Google Scholar 

  58. Sackett DL. Podophyllotoxin, steganacin and combretastatin: natural products that bind at the colchicine site of tubulin. Pharmacol Ther. 1993;59:163–228.

    CAS  PubMed  Google Scholar 

  59. Lin CM, Kang GJ, Roach MC, Jiang JB, Hesson DP, Luduena RF. Investigation of the mechanism of the interaction of tubulin with derivatives of 2-styrylquinazolin-4(3H)-one. Pharmacol. 1991;40:827–32.

    CAS  Google Scholar 

  60. Abal M, Andreu JM, Barasoain I. Taxanes: microtubule and centrosome targets, and cell cycle dependent mechanisms of action. Curr Cancer Drug Targets. 2003;3:193–203.

    CAS  PubMed  Google Scholar 

  61. Rothermel J, Wartmann M, Chen T, Hohneker J. EPO906 (epothilone B): a promising novel microtubule stabilizer. Semin Oncol. 2003;30:51–5.

    CAS  PubMed  Google Scholar 

  62. Choi JY, Cho HJ, Hwang SG, Kim WJ, Kim JI, Um HD, et al. Podophyllotoxin acetate enhances γ-ionizing radiation-induced apoptotic cell death by stimulating the ROS/p38/caspase pathway. Biomed Pharmacother. 2015;70:111–8.

    CAS  PubMed  Google Scholar 

  63. Shin SY, Yong Y, Kim CG, Lee YH, Lim Y. Deoxypodophyllotoxin induces G2/M cell cycle arrest and apoptosis in HeLa cells. Cancer Lett. 2010;287:231–9.

    CAS  PubMed  Google Scholar 

  64. Xu H, Lv M, Tian X. A review on hemisynthesis, biosynthesis, biological activities, mode of action, and structure-activity relationship of podophyllotoxins: 2003-2007. Curr Med Chem. 2009;16:327–49.

    CAS  PubMed  Google Scholar 

  65. Robles SJ, Buehler PW, Negrusz A, Adami GR. Permanent cell cycle arrest in asynchronously proliferating normal human fibroblasts treated with doxorubicin or etoposide but not camptothecin. Biochem Pharmacol. 1999;58:675–85.

    CAS  PubMed  Google Scholar 

  66. Guan X-W, Xu X-H, Feng S-L, Tang Z-B, Chen S-W, Hui L. Synthesis of hybrid 4-deoxypodophyllotoxin–5-fluorouracil compounds that inhibit cellular migration and induce cell cycle arrest. Bioorg Med Chem Lett. 2016;26(6):1561–6. https://doi.org/10.1016/j.bmcl.2016.02.013.

    Article  CAS  PubMed  Google Scholar 

  67. Zhu X-K, Guan J, Tachibana Y, Bastow KF, Cho SJ, Cheng H-H, et al. Antitumor Agents. 194. Synthesis and biological evaluations of 4-â-mono,-di-and-trisubstituted aniline-4 -O-demethyl-podophyllotoxin and related compounds with improved pharmacological profiles. J Med Chem. 1999;42:2441–6.

    CAS  PubMed  Google Scholar 

  68. Wrasidlo W, Gaedicke G, Guy RK, Renaud J, Pitsinos E, Nicolaou KC, et al. A novel 2 ‘-(N-methylpyridinium acetate) prodrug of paclitaxel induces superior antitumor responses in preclinical cancer models. Bioconjugate Chem. 2002;13:1093–9.

    CAS  Google Scholar 

  69. Ren J, Liu Y, Li L, Zhao Y, Li Z, Wu C, et al. OAMDP, a novel podophyllotoxin derivative, induces apoptosis, cell cycle arrest and autophagy in hepatoma HepG2 cells. Cell Biol Int. 2017;42(2):194–204. https://doi.org/10.1002/cbin.10892.

    Article  CAS  PubMed  Google Scholar 

  70. Cho JH, Hong WG, Jung Y, Lee J, Lee E, Hwang S, et al. Ionizing radiation-induced activation of the EGFR–p38/ERK–STAT3/CREB-1–EMT pathway promotes the migration/invasion of non-small cell lung cancer cells and is inhibited by podophyllotoxin acetate. Tumor Biol. 2016;37:7315–25. https://doi.org/10.1007/s13277-015-4548-y.

    Article  CAS  Google Scholar 

  71. Takimoto CH. Camptothecins A2 - Bertino, Joseph R, in Encyclopedia of Cancer. 2nd ed. New York: Academic Press; 2002.

    Google Scholar 

  72. Uzma F, Mohan CD, Hashem A, Konappa NM, Rangappa S, Kamath PV, et al. Endophytic fungi - alternative sources of cytotoxic compounds: a review. Front Pharmacol. 2018;9:309. https://doi.org/10.3389/fphar.2018.00309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Raveendran VV. Camptothecin-discovery, clinical perspectives and biotechnology. Nat Prod Chem Res. 2015;3:175.

    Google Scholar 

  74. Ran X, Zhang G, Li S, Wang J. Characterization and antitumor activity of camptothecin from endophytic fungus Fusarium solani isolated from Camptotheca acuminate. Afr Health Sci. 2017;17:566–74. https://doi.org/10.4314/ahs.v17i2.34.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Pu X, Qu X, Chen F, Bao J, Zhang G, Luo Y. Camptothecin producing endophytic fungus Trichoderma atroviride LY357: isolation, identification, and fermentation conditions optimization for camptothecin production. Appl Microbiol Biotechnol. 2013;97:9365–75. https://doi.org/10.1007/s00253-013-5163-8.

    Article  CAS  PubMed  Google Scholar 

  76. Aswini A, Soundhari C. Production of camptothecin from endophytic fungi and characterization by high-performance liquid chromatography and anticancer activity against colon cancer cell line. Asian J Pharm Clin Res. 2018;11(3):166–70. https://doi.org/10.22159/ajpcr.2018.v11i3.18921.

    Article  CAS  Google Scholar 

  77. Kusari S, Lamshoft M, Spiteller M. Aspergillus fumigatus Fresenius, an endophytic fungus from Juniperus communis L. Horstmann as a novel source of the anticancer pro-drug deoxypodophyllotoxin. J Appl Microbiol. 2009;107:1019–30. https://doi.org/10.1111/j.1365-2672.2009.04285.x.

    Article  CAS  PubMed  Google Scholar 

  78. Amna T, Puri SC, Verma V, Sharma JP, Khajuria RK, Musarrat J, et al. Bioreactor studies on the endophytic fungus Entrophospora infrequens for the production of an anticancer alkaloid camptothecin. Can J Microbiol. 2006;52:189–96. https://doi.org/10.1139/w05-122.

    Article  CAS  PubMed  Google Scholar 

  79. Hsiang Y-H, Hertzberg R, Hecht S, Liu LF. Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J Bioi Chem. 1985;260:14873–8.

    CAS  Google Scholar 

  80. Ciesielski MJ, Fenstermaker RA. Synergistic cytotoxicity, apoptosis and protein-linked DNA breakage by etoposide and camptothecin in human U87 glioma cells: dependence on tyrosine phosphorylation. J Neurooncol. 1999;41:223–34.

    CAS  PubMed  Google Scholar 

  81. Beretta GL, Gatti L, Perego P, Zaffaroni N. Camptothecin resistance in cancer: insights into the molecular mechanisms of a DNA damaging drug. Curr Med Chem. 2013;20:1541–65.

    CAS  PubMed  Google Scholar 

  82. Hertzberg RP, Caranfa MJ, Hecht SM. On the mechanism of topoisomerase I inhibition by camptothecin: evidence for binding to an enzyme-DNA complex. Biochem. 1989;28:4629–38.

    CAS  Google Scholar 

  83. Pommier Y. Topoisomerase I inhibitors: camptothecins and beyond. Nat Rev Cancer. 2006;6:789–802.

    CAS  PubMed  Google Scholar 

  84. Drukman S, Kavallaris M. Microtubule alterations and resistance to tubulin-binding agents (Review). Int J Oncol. 2002;21:621–8.

    CAS  PubMed  Google Scholar 

  85. Kumar A, Patil D, Rajamohanan PR, Ahmad A. Isolation, purification and characterization of vinblastine and vincristine from endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. PLoS ONE. 2013;8:e71805. https://doi.org/10.1371/journal.pone.0071805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Moore A, Pinkerton R. Vincristine: can its therapeutic index be enhanced? Pediatr Blood Cancer. 2009;53:1180–7. https://doi.org/10.1002/pbc.22161.

    Article  PubMed  Google Scholar 

  87. Redinbo MR, Stewart L, Kuhn P, Champoux JJ, Hol WG. Crystal structures of human topoisomerase I in covalent and noncovalent complexes with DNA. Science. 1998;279:1504–13. https://doi.org/10.1126/science.279.5356.1504.

    Article  CAS  PubMed  Google Scholar 

  88. Dancey J, Eisenhauer EA. Current perspectives on camptothecins in cancer treatment. Br J Cancer. 1996;74:327–38. https://doi.org/10.1038/bjc.1996.362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Liu W, Zhang R. Upregulation of p21WAF1/CIP1 in human breast cancer cell lines MCF-7 and MDA-MB-468 undergoing apoptosis induced by natural product anticancer drugs 10-hydroxycamptothecin and camptothecin through p53-dependent and independent pathways. Int J Oncol. 1998;12(4):793–804.

    CAS  PubMed  Google Scholar 

  90. Carter S, Livingston R. Plant products in cancer chemotherapy. Cancer Treat Rep. 1976;60:1141–56.

    CAS  PubMed  Google Scholar 

  91. Dahanukar S, Kulkarni R, Rege N. Pharmacology of medicinal plants and natural products. Indian J Pharmacol. 2000;32:81–118.

    Google Scholar 

  92. Perez J, Pardo J, Gomez C. Vincristine: an effective treatment of corticoid-resistant life-threatening infantile hemangiomas. Acta Oncol. 2002;41:197–9.

    PubMed  Google Scholar 

  93. Wang Q, Yuan F, Pan Q, Li M, Wang G, Zhao J, et al. Isolation and functional analysis of the Catharanthus roseus deacetylvindoline-4-O-acetyltransferase gene promoter. Plant Cell Rep. 2010;29:185–92.

    PubMed  Google Scholar 

  94. El-Kenawi AE, El-Remessy AB. Angiogenesis inhibitors in cancer therapy: mechanistic perspective on classification and treatment rationale. Br J Pharmacol. 2013;170(4):712–29. https://doi.org/10.1111/bph.12344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Guo B, Li H, Zhang L. Isolation of the fungus producing vinblastine. J Yunnan University Nat Sci Edition. 1998;20:214–5.

    CAS  Google Scholar 

  96. Zhang L, Guo B, Li H, Zeng S, Shao H, Gu S, et al. Preliminary study on the isolation of endophytic fungus of Catharanthus roseus and its fermentation to produce products of therapeutic value. Chin Tradit Herb Drugs. 2000;31:805–7.

    CAS  Google Scholar 

  97. Parthasarathy R, Shanmuganathan R, Pugazhendhi A. Vinblastine production by the endophytic fungus Curvularia verruculosa and their in vitro cytotoxicity. Anal Biochem. 2019;593:113530. https://doi.org/10.1016/j.ab.2019.113530.

    Article  CAS  PubMed  Google Scholar 

  98. Palem PP, Kuriakose GC, Jayabaskaran C. An endophytic fungus, Talaromyces radicus, isolated from Catharanthus roseus, produces vincristine and vinblastine, which induce apoptotic cell death. PLoS ONE. 2016;11(4):e0153111. https://doi.org/10.1371/journal.pone.0144476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Song X, Zhou X, Li X, Zheng C, Huang G, Yu Z, et al. Secondary metabolites of a Bruguiera sexangula var. Rhynchopetala derived fungus Phomopsis longicolla HL-2232. Youji Huaxue. 2015;35:2102–7.

    CAS  Google Scholar 

  100. Ayob FW, Simarani K, Abidin NZ, Mohamad J. First report on a novel Nigrospora sphaerica isolated from Catharanthus roseus plant with anticarcinogenic properties. Microb Biotechnol. 2017;10(4):926–32. https://doi.org/10.1111/1751-7915.12603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Avinash KS. krishnamurthy YL. Cytotoxic activity of endophytic fungi HHPCYL03 isolated from Cymbopogon flexuosus Nees Ex Steud. Int J Curr Pharm Res. 2015;7(3):70–2.

    CAS  Google Scholar 

  102. Danagoudar A, Joshi CG, Ravi SK, Rohit Kumar HG, Ramesh BN. Antioxidant and cytotoxic potential of endophytic fungi isolated from medicinal plant Tragia involucrata L. Phcog Res. 2018;10:188–94.

    CAS  Google Scholar 

  103. Majoumouo MS, Tincho MB, Toghueo RMK, Morris T, Hiss DC, Boyom FF, et al. Cytotoxicity potential of endophytic fungi extracts from Terminalia catappa against human cervical cancer Cells J Toxicol 2020;2020:1–9. https://doi.org/10.1155/2020/8871152.

  104. Cui CM, Li XM, Li CS, Proksch P, Wang BG. Cytoglobosins A–G, cytochalasans from a marine-derived endophytic fungus, Chaetomium globosum QEN-14. J Nat Prod. 2010;73:729–33. https://doi.org/10.1021/np900569t.

    Article  CAS  PubMed  Google Scholar 

  105. Wang Y, Xu L, Ren W, Zhao D, Zhu Y, Wu X. Bioactive metabolites from Chaetomium globosum L18, an endophytic fungus in the medicinal plant Curcuma wenyujin. Phytomedicine. 2012;19:364–8. https://doi.org/10.1016/j.phymed.2011.10.011.

    Article  CAS  PubMed  Google Scholar 

  106. Huang C, Jin H, Song B, Zhu X, Zhao H, Cai J, et al. The cytotoxicity and anticancer mechanisms of alterporriol L, a marine bianthraquinone, against MCF-7 human breast cancer cells. Appl Microbiol Biotechnol. 2012;93:777–85. https://doi.org/10.1007/s00253-011-3463-4.

    Article  CAS  PubMed  Google Scholar 

  107. Huang Z, Yang J, Lei F, She Z, Lin Y. A new xanthone O-glycoside from the mangrove endophytic fungus Phomopsis sp. Chem Nat Compd. 2013;49:27–30. https://doi.org/10.1007/s10600-013-0497-0.

    Article  CAS  Google Scholar 

  108. Luo YF, Zhang M, Dai JG, Pedpradab P, Wang WJ, Wu J. Cytochalasins from mangrove endophytic fungi Phomopsis spp. xy21 and xy22. Phytochem Lett. 2016;17:162–6.

    CAS  Google Scholar 

  109. Ding B, Yuan J, Huang X, Wen W, Zhu X, Liu Y, et al. New dimeric members of the phomoxanthone family: phomolactonexanthones A, B and deacetylphomoxanthone C isolated from the fungus Phomopsis sp. Mar Drugs. 2013;11:4961–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Luo X, Lin X, Tao H, Wang J, Li J, Yang B. Isochromophilones A-F, cytotoxic chloroazaphilones from the marine mangrove endophytic fungus Diaporthe sp. SCSIO 41011. J Nat Prod. 2018;81:934–41.

    CAS  PubMed  Google Scholar 

  111. Zhang JY, Tao LY, Liang YJ, Yan YY, Dai CL, Xia XK, et al. Secalonic acid D induced leukemia cell apoptosis and cell cycle arrest of G(1) with involvement of GSK-3beta/beta-catenin/c-Myc pathway. Cell Cycle. 2009;8:2444–50. https://doi.org/10.4161/cc.8.15.9170.

    Article  CAS  PubMed  Google Scholar 

  112. Ruma K, Sunil K, Prakash HS. Antioxidant, anti-inflammatory, antimicrobial and cytotoxic properties of fungal endophytes from Garcinia species. Int J Pharm Pharm Sci. 2013;5:889–97.

    Google Scholar 

  113. Suja M, Vasuki S, Sajitha N. Anticancer activity of compounds isolated from marine endophytic fungus Aspergillus terreus. World J Pharm Pharm Sci. 2014;3:661–72.

    Google Scholar 

  114. Huang Z, Guo Z, Yang R, Yin X, Li X, Luo W, et al. Chemistry and cytotoxic activities of polyketides produced by the mangrove endophytic fungus Phomopsis sp. ZSU-H76. Chem Nat Comp. 2009;45:625. https://doi.org/10.1007/s10600-009-9446-3.

    Article  CAS  Google Scholar 

  115. Isaka M, Jaturapat A, Rukseree K, Danwisetkanjana K, Tanticharoen M, Thebtaranonth Y. Phomoxanthones A and B, novel xanthone dimers from the endophytic fungus Phomopsis species. J. Nat. Prod. 2001;64:1015–8. https://doi.org/10.1021/np010006h.

    Article  CAS  PubMed  Google Scholar 

  116. Xu J, Kjer J, Sendker J, Wray V, Guan H, Edrada R, et al. Chromones from the endophytic fungus Pestalotiopsis sp. isolated from the chinese mangrove plant Rhizophora mucronata. J Nat Prod. 2009;72:662–5. https://doi.org/10.1021/np800748u.

    Article  CAS  PubMed  Google Scholar 

  117. Isaka M, Palasarn S, Lapanun S, Chanthaket R, Boonyuen N, Lumyong S. Gamma-lactones and ent-eudesmane sesquiterpenes from the endophytic fungus Eutypella sp. BCC 13199. J Nat Prod. 2009;72:1720–2. https://doi.org/10.1021/np900316x.

    Article  CAS  PubMed  Google Scholar 

  118. Isaka M, Chinthanom P, Boonruangprapa T, Rungjindamai N, Pinruan U. Eremophilane-type sesquiterpenes from the fungus Xylaria sp. BCC 21097. J Nat Prod. 2010;73:683–7. https://doi.org/10.1021/np100030x.

    Article  CAS  PubMed  Google Scholar 

  119. Du XP, Su WJ. Two new polyketides from mangrove endophytic fungus Dothiorella sp. Chem Nat Compd. 2014;50:214–6.

    CAS  Google Scholar 

  120. Li J, Xue Y, Yuan J, Lu Y, Zhu X, Lin Y, et al. Lasiodiplodins from mangrove endophytic fungus Lasiodiplodia sp. 318#. Nat Prod Res. 2015;30(7):755–60.

    PubMed  Google Scholar 

  121. Deshmukh SK, Mishra PD, Kulkarni-Almeida A, Verekar S, Sahoo MR, Periyasamy G, et al. Anti-inflammatory and anticancer activity of ergoflavin isolated from an endophytic fungus. Chem Biodivers. 2009;6:784–9. https://doi.org/10.1002/cbdv.200800103.

    Article  CAS  PubMed  Google Scholar 

  122. Chinworrungsee M, Wiyakrutta S, Sriubolmas N, Chuailua P, Suksamrarn A. Cytotoxic activities of trichothecenes isolated from an endophytic fungus belonging to order Hypocreales. Arch Pharm Res. 2008;31:611–6. https://doi.org/10.1007/s12272-001-1201-x.

    Article  CAS  PubMed  Google Scholar 

  123. Wang H, Liu T, Xin Z. A new glucitol from an endophytic fungus Fusarium equiseti Salicorn 8. Eur Food Res Technol. 2014;239:365–76. https://doi.org/10.1007/s00217-014-2230-z.

    Article  CAS  Google Scholar 

  124. Wen L, Wei Q, Chen G, Cai J, She Z. Chemical constituents from the mangrove endophytic fungus Sporothrix sp. Chem Nat Compd. 2013;49:137–40.

    CAS  Google Scholar 

  125. Liu D, Li XM, Meng L, Li CS, Gao SS, Shang Z, et al. Nigerapyrones A–H, alpha-pyrone derivatives from the marine mangrove-derived endophytic fungus Aspergillus niger MA-132. J Nat Prod. 2011;74:1787–91. https://doi.org/10.1021/np200381u.

    Article  CAS  PubMed  Google Scholar 

  126. Zheng CJ, Liao HX, Mei RQ, Huang GL, Yang LJ, Zhou XM, et al. Two new benzophenones and one new natural amide alkaloid isolated from a mangrove-derived Fungus Penicillium citrinum. Nat Prod Res. 2019;33:1127–34. https://doi.org/10.1080/14786419.2018.1460832.

    Article  CAS  PubMed  Google Scholar 

  127. Davis RA, Longden J, Avery VM, Healy PC. The isolation, structure determination and cytotoxicity of the new fungal metabolite, trichodermamide C. Bioorg Med Chem Lett. 2008;18:2836–9. https://doi.org/10.1016/j.bmcl.2008.03.090.

    Article  CAS  PubMed  Google Scholar 

  128. Wang FW, Hou ZM, Wang CR, Li P, Shi DH. Bioactive metabolites from Penicillium sp., an endophytic fungus residing in Hopea hainanensis. World J Microbiol Biotechnol. 2008;24:2143–7. https://doi.org/10.1007/s11274-008-9720-8.

    Article  CAS  Google Scholar 

  129. Chen X, Shi Q, Lin G, Guo S, Yang J. Spirobisnaphthalene analogues from the endophytic fungus Preussia sp. J Nat Prod. 2009;72:1712–5. https://doi.org/10.1021/np900302w.

    Article  CAS  PubMed  Google Scholar 

  130. Zhu M, Yang Z, Feng H, Gan Q, Che Q, Zhu T, et al. Trichodermamides D-F, heterocyclic dipeptides with a highly functionalized 1,2 oxazadecaline core isolated from the endophytic fungus Penicillium janthinellum HDN13-309. RSC Adv. 2017;7:48019–24.

    CAS  Google Scholar 

  131. Meng LH, Wang CY, Mandi A, Li XM, Hu XY, Kassack MU, et al. Three diketopiperazine alkaloids with spirocyclic skeletons and one bisthiodiketopiperazine derivative from the mangrove-derived endophytic fungus Penicillium brocae MA-231. Org Lett. 2016;18:5304–7. https://doi.org/10.1021/acs.orglett.6b02620.

    Article  CAS  PubMed  Google Scholar 

  132. Lu Z, Zhu H, Fu P, Wang Y, Zhang Z, Lin H, et al. Cytotoxic polyphenols from the marine-derived fungus Penicillium expansum. J Nat Prod. 2010;73:911–4. https://doi.org/10.1021/np100059m.

    Article  CAS  PubMed  Google Scholar 

  133. Chokpaiboon S, Sommit D, Teerawatananond T, Muangsin N, Bunyapaiboonsri T, Pudhom K. Cytotoxic Nor-chamigrane and chamigrane endoperoxides from a Basidiomycetous fungus. J Nat Prod. 2010;73:1005–7. https://doi.org/10.1021/np100103j.

    Article  CAS  PubMed  Google Scholar 

  134. Cui H, Yu J, Chen S, Ding M, Huang X, Yuan J, et al. Alkaloids from the mangrove endophytic fungus Diaporthe phaseolorum SKS019. Bioorg Med Chem Lett. 2017;27:803–7. https://doi.org/10.1016/j.bmcl.2017.01.029.

    Article  CAS  PubMed  Google Scholar 

  135. Akay S, Ekiz G, Kocabas F, Hames-Kocabas E, Korkmaz K, Bedir E. A new 5,6-dihydro-2-pyrone derivative from Phomopsis amygdali, an endophytic fungus isolated from hazelnut (Corylus avellana). Phytochem Lett. 2014;7:93–6. https://doi.org/10.1016/j.phytol.2013.09.012.

    Article  CAS  Google Scholar 

  136. Gao N, Shang ZC, Yu P, Luo J, Jian KL, Kong LY, et al. Alkaloids from the endophytic fungus Penicillium brefeldianum and their cytotoxic activities. Chin Chem Lett. 2017;28:1194–9. https://doi.org/10.1016/j.cclet.2017.02.022.

    Article  CAS  Google Scholar 

  137. Fang ZF, Yu SS, Zhou WQ, Chen XG, Ma SG, Li Y, et al. A new isocoumarin from metabolites of the endophytic fungus Alternaria tenuissima (Nees & T. Nees: Fr.) Wiltshire. Chin Chem Lett. 2012;23:317–20. https://doi.org/10.1016/j.cclet.2011.11.021.

    Article  CAS  Google Scholar 

  138. Bunyapaiboonsri T, Yoiprommarat S, Srikitikulchai P, Srichomthong K, Lumyong S. Oblongolides from the endophytic fungus Phomopsis sp. BCC 9789. J Nat Prod. 2010;73:55–9. https://doi.org/10.1021/np900650c.

    Article  CAS  PubMed  Google Scholar 

  139. Zhang M, Liu JM, Zhao JL, Li N, Chen RD, Xie KB, et al. Two new diterpenoids from the endophytic fungus Trichoderma sp. Xy24 isolated from mangrove plant Xylocarpus granatum. Chin Chem Lett. 2016;27:957–60. https://doi.org/10.1016/j.cclet.2016.02.008.

    Article  CAS  Google Scholar 

  140. Zhou ZF, Kurtan T, Yang XH, Mandi A, Geng MY, Ye BP, et al. Penibruguieramine A, a novel pyrrolizidine alkaloid from the endophytic fungus Penicillium sp. GD6 associated with Chinese mangrove Bruguiera gymnorrhiza. Org Lett. 2014;16:1390–3. https://doi.org/10.1021/ol5001523.

    Article  CAS  PubMed  Google Scholar 

  141. Shang Z, Li XM, Li CS, Wang BG. Diverse secondary metabolites produced by marine-derived fungus Nigrospora sp. MA75 on various culture media. Chem Biodivers. 2012;9:1338–48. https://doi.org/10.1002/cbdv.201100216.

    Article  CAS  PubMed  Google Scholar 

  142. Tao YW, Lin YC, She ZG, Lin MT, Chen PX, Zhang JY. Anticancer activity and mechanism investigation of beauvericin isolated from secondary metabolites of the mangrove endophytic fungi. Anticancer Agents Med Chem. 2015;15:258–66. https://doi.org/10.2174/1871520614666140825112255.

    Article  CAS  PubMed  Google Scholar 

  143. Tawfike AF, Romli M, Clements C, Abbott G, Young L, Schumacher M, et al. Isolation of anticancer and anti-trypanosome secondary metabolites from the endophytic fungus Aspergillus flocculus via bioactivity guided isolation and MS based metabolomics. J Chromatogr B. 2019;1106–1107:71–83. https://doi.org/10.1016/j.jchromb.2018.12.032.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors declare that this review work on anticancer compounds was done by the authors and all liabilities on claims relating to the content of this article will be borne by them. Suneel Kumar and Ravindra Prasad Aharwal contributed equally to this work and should be considered as co-first authors.

Corresponding author

Correspondence to Sardul Singh Sandhu.

Ethics declarations

Conflict of Interest

No conflict of interest associated with this work.

Human and Animal Rights Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Natural Products: From Chemistry to Pharmacology

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Aharwal, R.P., Jain, R. et al. Bioactive Molecules of Endophytic Fungi and Their Potential in Anticancer Drug Development. Curr Pharmacol Rep 7, 27–41 (2021). https://doi.org/10.1007/s40495-021-00251-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40495-021-00251-y

Keywords

Navigation