Skip to main content

Advertisement

Log in

Sandalwood Oil for the Chemoprevention of Skin Cancer: Mechanistic Insights, Anti-inflammatory, and In Vivo Anticancer Potential

  • Cancer Chemoprevention (R Agarwal and S Yu, Section Editors)
  • Published:
Current Pharmacology Reports Aims and scope Submit manuscript

Abstract

There is an increasing incidence of skin cancer across the world. The World Health Organization reports that the global incidence of melanoma will continue to rise with increasing depletion of the ozone layer and consequent UV irradiation. The natural product sandalwood oil from genus Santalum (Family Santalaceae) and its constituent alpha-santalol have been reported to exert chemopreventive effects against skin cancers as well as prostate, head and neck, and breast cancers. The anticancer effects are mediated via modulation of MAPK, AP-1, beta-catenin and PI3K/Akt pathways, upregulation of p21, and activation of caspases/PARP. Furthermore, sandalwood oil exerts anti-inflammatory activities via prostaglandin E2, IL-1beta, inhibition of NF-kappaB, and 5-lipoxygenase. Other therapeutic activities in eczema, psoriasis, radiation dermatitis, antifungal, etc. have also been reported. Sandalwood oil has acceptable safety and is well-tolerated. Taken together, given the chemopreventive potential of sandalwood oil, future clinical trials are warranted to investigate its use as an adjunct to chemotherapy or immunotherapy for skin cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

A431 cells:

Human epidermoid carcinoma cell line

AP-1:

Activator protein 1

BCC:

Basal cell carcinoma

COX-2:

Cyclooxygenase-2

DHA:

Docosahexenoic acid

DMBA:

7,12-Dimethylbenz(a) anthracene

GPCR:

G protein-coupled receptor

GST:

Glutathione-S-transferase

HaCaT:

Cultured human keratinocyte cells

HUVEC:

Human umbilical vein endothelial cells

IL:

Interleukin

J82:

Human bladder carcinoma cell line

LC3:

Microtubule-associated protein 1 light chain 3

LD50 :

Lethal dose (in 50% of population)

LNCaP:

Lymph node carcinoma of the prostate (prostate cancer cells)

LPS:

Lipopolysaccharide

MAPK:

Mitogen-activated protein kinase

MCF-7:

Michigan Cancer Foundation-7 (breast cancer cells)

MCF-10A:

Normal mammary epithelial cells

MDA-MB 231 cells:

Triple-negative breast cancer cell line

MDCK:

Madin-Darby canine kidney cells

ODC:

Ornithine decarboxylase

p53:

Tumor suppressor protein

PC-3:

Prostate cancer cell line

PI3K:

Phosphatidylinositol-3-kinase

PUFA:

Polyunsaturated fatty acid

SCC:

Squamous cell carcinoma

TPA:

12-O-tetradecanoyl phorbol-13-acetate

UV:

Ultraviolet

UROtsa:

Human urothelial cell line

VAS:

Visual analog scale

VEGF:

Vascular endothelial growth factor

VEGFR2:

Vascular endothelial growth factor receptor 2

References

  1. Goh KJ, Tan CT, Chew NK, Tan PS, Kamarulzaman A, Sarji SA, et al. Clinical features of Nipah virus encephalitis among pig farmers in Malaysia. N Engl J Med. 2000;342(17):1229–35.

    Article  CAS  PubMed  Google Scholar 

  2. Hsu VP, Hossain MJ, Parashar UD, Ali MM, Ksiazek TG, Kuzmin I, et al. Nipah virus encephalitis reemergence, Bangladesh. Emerg Infect Dis. 2004;10(12):2082–7.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sazzad HM, Hossain MJ, Gurley ES, Ameen KM, Parveen S, Islam MS, et al. Nipah virus infection outbreak with nosocomial and corpse-to-human transmission, Bangladesh. Bangladesh. Emerg Infect Dis. 2013;19(2):210–7.

    Article  PubMed  Google Scholar 

  4. Ang BSP, Lim TCC,Wang L. Nipah virus infection. J Clin Microbiol 2018; 56(6):

  5. Rogers HW, Weinstock MA, Feldman SR, Coldiron BM. Incidence estimate of nonmelanoma skin cancer (keratinocyte carcinomas) in the U.S. population, 2012. JAMA Dermatol. 2015;151(10):1081–6.

    Article  PubMed  Google Scholar 

  6. Hassan MZ, Sazzad HMS, Luby SP, Sturm-Ramirez K, Bhuiyan MU, Rahman MZ, et al. Nipah virus contamination of hospital surfaces during outbreaks, Bangladesh, 2013-2014. Emerg Infect Dis. 2018;24(1):15–21.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Nahar N, Paul RC, Sultana R, Sumon SA, Banik KC, Abedin J, et al. A controlled trial to reduce the risk of human Nipah virus exposure in Bangladesh. Ecohealth. 2017;14(3):501–17.

    Article  PubMed  Google Scholar 

  8. Prasad N, Radhiga T, Agilan B, Muzaffer U, Karthikeyan R, Kanimozhi G, et al. Phytochemicals as modulators of ultraviolet-b radiation induced cellular and molecular events: a review. Journal of Radiation and Cancer Research 2016; 7(1).

  9. Chadha MS, Comer JA, Lowe L, Rota PA, Rollin PE, Bellini WJ, et al. Nipah virus-associated encephalitis outbreak, Siliguri, India. Emerg Infect Dis. 2006;12(2):235–40.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cohuet S, Marquer C, Shepherd S, Captier V, Langendorf C, Ale F, et al. Intra-household use and acceptability of ready-to-use-supplementary-foods distributed in Niger between July and December 2010. Appetite. 2012;59(3):698–705.

    Article  PubMed  Google Scholar 

  11. Saw CL, Huang MT, Liu Y, Khor TO, Conney AH, Kong AN. Impact of Nrf2 on UVB-induced skin inflammation/photoprotection and photoprotective effect of sulforaphane. Mol Carcinog. 2011;50(6):479–86.

    Article  CAS  PubMed  Google Scholar 

  12. Cortes MC, Cauchemez S, Lefrancq N, Luby SP, Jahangir Hossain M, Sazzad HMS, et al. Characterization of the spatial and temporal distribution of Nipah virus spillover events in Bangladesh, 2007-2013. J Infect Dis. 2018;217(9):1390–4.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Isanaka S, Guesdon B, Labar AS, Hanson K, Langendorf C, Grais RF. Comparison of clinical characteristics and treatment outcomes of children selected for treatment of severe acute malnutrition using mid upper arm circumference and/or weight-for-height Z-score. PLoS One. 2015;10(9):e0137606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nair S. Pharmacometrics and systems pharmacology of immune checkpoint inhibitor nivolumab in cancer translational medicine. Advances in Modern Oncology Research 2016; 2(1).

  15. Islam MS, Sazzad HM, Satter SM, Sultana S, Hossain MJ, Hasan M, et al. Nipah virus transmission from bats to humans associated with drinking traditional liquor made from date palm sap, Bangladesh, 2011-2014. Emerg Infect Dis. 2016;22(4):664–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nair S, Iyer A, Vijay V, Bandlamudi S, Llerena A. Pharmacokinetics and systems pharmacology of monoclonal antibody olaratumab for inoperable soft tissue sarcoma. Advances in Modern Oncology Research 2017; 3(3).

  17. Gurley ES, Montgomery JM, Hossain MJ, Bell M, Azad AK, Islam MR, et al. Person-to-person transmission of Nipah virus in a Bangladeshi community. Emerg Infect Dis. 2007;13(7):1031–7.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Arunkumar AN, Joshi GY, Mohan Ram H. Sandalwood: History, uses, present status and the future, 2012.

  19. Moy RL, Levenson C. Sandalwood album oil as a botanical therapeutic in dermatology. J Clin Aesthet Dermatol. 2017;10(10):34–9.

    PubMed  PubMed Central  Google Scholar 

  20. Moniodis J, Jones CG, Renton M, Plummer JA, Barbour EL, Ghisalberti EL, et al. Sesquiterpene Variation in West Australian Sandalwood (Santalum spicatum). Molecules 2017; 22(6):

  21. Bulle S, Reddyvari H, Nallanchakravarthula V, Vaddi DR. Therapeutic potential of Pterocarpus santalinus L.: an update. Pharmacogn Rev. 2016;10(19):43–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brophy JJ, Fookes CJR, Lassak EV. Constituents of Santalum spicatum (R.Br.) A. DC. Wood Oil. J Essent Oil Res. 1991;3(6):381–5.

    Article  CAS  Google Scholar 

  23. Valder C, Neugebauer M, Meier M, Kohlenberg B, Hammerschmidt F-J,Braun N: Western Australian sandalwood oil - new constituents of santalum spicatum (R. Br.) A. DC. (Santalaceae), 2003.

  24. Braun NA, Sim S, Kohlenberg B, Lawrence BM. Hawaiian sandalwood: oil composition of Santalum paniculatum and comparison with other sandal species. Nat Prod Commun. 2014;9(9):1365–8.

    CAS  PubMed  Google Scholar 

  25. Page T, Southwell I, Russell M, Tate H, Tungon J, Sam C, et al. Geographic and phenotypic variation in heartwood and essential-oil characters in natural populations of Santalum austrocaledonicum in Vanuatu. Chem Biodivers. 2010;7(8):1990–2006.

    Article  CAS  PubMed  Google Scholar 

  26. Harbaugh DT, Baldwin BG. Phylogeny and biogeography of the sandalwoods (Santalum, Santalaceae): repeated dispersals throughout the Pacific. Am J Bot. 2007;94(6):1028–40.

    Article  PubMed  Google Scholar 

  27. Rached W, Calhelha RC, Fernandes Â, Carvalho AM, Bennaceur M, Marouf A, et al. Phytochemical characterization and bioactive properties of Osyris quadripartita Salzm. ex Decne. leaves from Algeria. RSC Adv. 2016;6(76):72768–76.

    Article  CAS  Google Scholar 

  28. Kreipl AT, Konig WA. Sesquiterpenes from the east African sandalwood Osyris tenuifolia. Phytochemistry. 2004;65(14):2045–9.

    Article  CAS  PubMed  Google Scholar 

  29. Bossart KN, Wang LF, Flora MN, Chua KB, Lam SK, Eaton BT, et al. Membrane fusion tropism and heterotypic functional activities of the Nipah virus and Hendra virus envelope glycoproteins. J Virol. 2002;76(22):11186–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang X, Dwivedi C. Skin cancer chemoprevention by alpha-santalol. Front Biosci (Schol Ed). 2011;3:777–87.

    Google Scholar 

  31. Dickinson SE, Olson ER, Levenson C, Janda J, Rusche JJ, Alberts DS, et al. A novel chemopreventive mechanism for a traditional medicine: East Indian sandalwood oil induces autophagy and cell death in proliferating keratinocytes. Arch Biochem Biophys. 2014;558:143–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kaur M, Agarwal C, Singh RP, Guan X, Dwivedi C, Agarwal R. Skin cancer chemopreventive agent, {alpha}-santalol, induces apoptotic death of human epidermoid carcinoma A431 cells via caspase activation together with dissipation of mitochondrial membrane potential and cytochrome c release. Carcinogenesis. 2005;26(2):369–80.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang X, Chen W, Guillermo R, Chandrasekher G, Kaushik RS, Young A, et al. Alpha-santalol, a chemopreventive agent against skin cancer, causes G2/M cell cycle arrest in both p53-mutated human epidermoid carcinoma A431 cells and p53 wild-type human melanoma UACC-62 cells. BMC Res Notes. 2010;3:220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dwivedi C, Guan X, Harmsen WL, Voss AL, Goetz-Parten DE, Koopman EM, et al. Chemopreventive effects of alpha-santalol on skin tumor development in CD-1 and SENCAR mice. Cancer Epidemiol Biomarkers Prevent : Public Am Assoc Cancer RES Cosponsored Am Soc Prevent Oncol. 2003;12(2):151–6.

    CAS  Google Scholar 

  35. Dwivedi C, Abu-Ghazaleh A. Chemopreventive effects of sandalwood oil on skin papillomas in mice. Eur J Cancer Prev. 1997;6(4):399–401.

    Article  CAS  PubMed  Google Scholar 

  36. Dwivedi C, Valluri HB, Guan X, Agarwal R. Chemopreventive effects of alpha-santalol on ultraviolet B radiation-induced skin tumor development in SKH-1 hairless mice. Carcinogenesis. 2006;27(9):1917–22.

    Article  CAS  PubMed  Google Scholar 

  37. Arasada BL, Bommareddy A, Zhang X, Bremmon K, Dwivedi C. Effects of alpha-santalol on proapoptotic caspases and p53 expression in UVB irradiated mouse skin. Anticancer Res. 2008;28(1A):129–32.

    CAS  PubMed  Google Scholar 

  38. Santha S, Dwivedi C. Alpha-santalol, a skin cancer chemopreventive agent with potential to target various pathways involved in photocarcinogenesis. Photochem Photobiol. 2013;89(4):919–26.

    Article  CAS  PubMed  Google Scholar 

  39. Chilampalli C, Zhang X, Kaushik RS, Young A, Zeman D, Hildreth MB, et al. Chemopreventive effects of combination of honokiol and magnolol with alpha-santalol on skin cancer developments. Drug Discov Ther. 2013;7(3):109–15.

    CAS  PubMed  Google Scholar 

  40. Banerjee S, Ecavade A, Rao AR. Modulatory influence of sandalwood oil on mouse hepatic glutathione S-transferase activity and acid soluble sulphydryl level. Cancer Lett. 1993;68(2–3):105–9.

    Article  CAS  PubMed  Google Scholar 

  41. Saraswati S, Kumar S, Alhaider AA. alpha-santalol inhibits the angiogenesis and growth of human prostate tumor growth by targeting vascular endothelial growth factor receptor 2-mediated AKT/mTOR/P70S6K signaling pathway. Mol Cancer. 2013;12:147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ortiz C, Morales L, Sastre M, Haskins WE, Matta J. Cytotoxicity and genotoxicity assessment of sandalwood essential oil in human breast cell lines MCF-7 and MCF-10A. Evid Based Complement Alternat Med. 2016;2016:3696232.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Dave K, Alsharif FM, Islam S, Dwivedi C, Perumal O. Chemoprevention of breast cancer by transdermal delivery of alpha-santalol through breast skin and mammary papilla (nipple). Pharm Res. 2017;34(9):1897–907.

    Article  CAS  PubMed  Google Scholar 

  44. Lee B, Bohmann J, Reeves T, Levenson C, Risinger AL. Alpha- and beta-santalols directly interact with tubulin and cause mitotic arrest and cytotoxicity in oral cancer cells. J Nat Prod. 2015;78(6):1357–62.

    Article  CAS  PubMed  Google Scholar 

  45. Dozmorov MG, Yang Q, Wu W, Wren J, Suhail MM, Woolley CL, et al. Differential effects of selective frankincense (Ru Xiang) essential oil versus non-selective sandalwood (Tan Xiang) essential oil on cultured bladder cancer cells: a microarray and bioinformatics study. Chin Med. 2014;9:18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bommareddy A, Knapp K, Nemeth A, Steigerwalt J, Landis T, Vanwert AL, et al. Alpha-santalol, a component of sandalwood oil inhibits migration of breast cancer cells by targeting the beta-catenin pathway. Anticancer Res. 2018;38(8):4475–80.

    Article  CAS  PubMed  Google Scholar 

  47. Li G, Singh A, Liu Y, Sunderland B, Li D. Comparative effects of sandalwood seed oil on fatty acid profiles and inflammatory factors in rats. Lipids. 2013;48(2):105–13.

    Article  CAS  PubMed  Google Scholar 

  48. Sharma M, Levenson C, Bell RH, Anderson SA, Hudson JB, Collins CC, et al. Suppression of lipopolysaccharide-stimulated cytokine/chemokine production in skin cells by sandalwood oils and purified alpha-santalol and beta-santalol. Phytother Res. 2014;28(6):925–32.

    Article  CAS  PubMed  Google Scholar 

  49. Sharma M, Levenson C, Browning JC, Becker EM, Clements I, Castella P, et al. East Indian sandalwood oil is a phosphodiesterase inhibitor: a new therapeutic option in the treatment of inflammatory skin disease. Front Pharmacol. 2018;9:200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sharma M, Levenson C, Clements I, Castella P, Gebauer K, Cox ME. East Indian Sandalwood Oil (EISO) alleviates inflammatory and proliferative pathologies of psoriasis. Front Pharmacol. 2017;8:125.

    PubMed  PubMed Central  Google Scholar 

  51. Palatty PL, Azmidah A, Rao S, Jayachander D, Thilakchand KR, Rai MP, et al. Topical application of a sandal wood oil and turmeric based cream prevents radiodermatitis in head and neck cancer patients undergoing external beam radiotherapy: a pilot study. Br J Radiol. 2014;87(1038):20130490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rao S, Hegde SK, Baliga-Rao MP, Lobo J, Palatty PL, George T, et al. Sandalwood oil and turmeric-based cream prevents ionizing radiation-induced dermatitis in breast cancer patients: clinical study. Medicines (Basel) 2017; 4(3).

  53. Chao S, Young G, Oberg C, Nakaoka K. Inhibition of methicillin-resistant Staphylococcus aureus (MRSA) by essential oils 2008; 23(6):444–449.

  54. ClinicalTrials.gov: ClinicalTrials.gov (2018). A Trial of a Botanical Drug Containing East Indian Sandalwood Oil (EISO) For Treatment of Atopic Dermatitis, 2018.

  55. ClinicalTrials.gov: ClinicalTrials.gov (2018). A trial of a botanical drug containing East Indian Sandalwood Oil (EISO) for treatment of mild-to-moderate plaque psoriasis., 2018.

  56. ClinicalTrials.gov: ClinicalTrials.gov (2018). A trial of a botanical drug containing East Indian Sandalwood Oil (EISO) for treatment of plaque psoriasis in adults., 2018.

  57. ClinicalTrials.gov: ClinicalTrials.gov (2017). A trial of a botanical drug product containing East Indian Sandalwood Oil (EISO) For Treatment of Atopic Dermatitis, 2017.

  58. Paulpandi M, Kannan S, Thangam R, Kaveri K, Gunasekaran P, Rejeeth C. In vitro anti-viral effect of beta-santalol against influenza viral replication. Phytomedicine. 2012;19(3–4):231–5.

    Article  CAS  PubMed  Google Scholar 

  59. Koch C, Reichling J, Schneele J, Schnitzler P. Inhibitory effect of essential oils against herpes simplex virus type 2. Phytomedicine. 2008;15(1–2):71–8.

    Article  CAS  PubMed  Google Scholar 

  60. ClinicalTrials.gov: ClinicalTrials.gov (2017). A trial of a botanical drug containing East Indian Sandalwood Oil (EISO) for treatment of common warts., 2017.

  61. ClinicalTrials.gov: ClinicalTrials.gov (2017). A trial of a botanical drug containing East Indian Sandalwood Oil (EISO) for the treatment of Molluscum Contagiosum., 2017.

  62. ClinicalTrials.gov: ClinicalTrials.gov (2017). A trial of a botanical drug containing East Indian Sandalwood Oil (EISO) for the treatment of external genital warts., 2017.

  63. Hammer KA, Carson CF, Riley TV. Antimicrobial activity of essential oils and other plant extracts. J Appl Microbiol. 1999;86(6):985–90.

    Article  CAS  PubMed  Google Scholar 

  64. Hammer KA, Carson CF, Riley TV. In-vitro activity of essential oils, in particular Melaleuca alternifolia (tea tree) oil and tea tree oil products, against Candida spp. J Antimicrob Chemother. 1998;42(5):591–5.

    Article  CAS  PubMed  Google Scholar 

  65. Inouye S, Uchida K, Abe S. Vapor activity of 72 essential oils against a Trichophyton mentagrophytes. J Infect Chemother. 2006;12(4):210–6.

    Article  CAS  PubMed  Google Scholar 

  66. Nardoni S, Giovanelli S, Pistelli L, Mugnaini L, Profili G, Pisseri F, et al. In vitro activity of twenty commercially available, plant-derived essential oils against selected dermatophyte species. Nat Prod Commun. 2015;10(8):1473–8.

    PubMed  Google Scholar 

  67. Hongratanaworakit T, Heuberger E, Buchbauer G. Evaluation of the effects of East Indian Sandalwood Oil and alpha-santalol on humans after transdermal absorption. Planta Med. 2004;70(1):3–7.

    Article  CAS  PubMed  Google Scholar 

  68. ClinicalTrials.gov: ClinicalTrials.gov (2017). A trial of a botanical drug containing East Indian Sandalwood Oil (EISO) for the treatment of oral mucositis., 2017.

  69. Baylac S, Racine P. Inhibition of 5-lipoxygenase by essential oils and other natural fragrant extracts. Int J Aromather. 2003;13(2):138–42.

    Article  Google Scholar 

  70. Warnke PH, Becker ST, Podschun R, Sivananthan S, Springer IN, Russo PA, et al. The battle against multi-resistant strains: renaissance of antimicrobial essential oils as a promising force to fight hospital-acquired infections. J Cranio-maxillo-facial surgery : Off Public Eur Assoc Cranio-Maxillo-Facial Surg. 2009;37(7):392–7.

    Article  Google Scholar 

  71. Naser AM, Hossain MJ, Sazzad HM, Homaira N, Gurley ES, Podder G, et al. Integrated cluster- and case-based surveillance for detecting stage III zoonotic pathogens: an example of Nipah virus surveillance in Bangladesh. Epidemiol Infect. 2015;143(9):1922–30.

    Article  CAS  PubMed  Google Scholar 

  72. Hahn MB, Epstein JH, Gurley ES, Islam MS, Luby SP, Daszak P, et al. Roosting behaviour and habitat selection of Pteropus giganteus reveals potential links to Nipah virus epidemiology. J Appl Ecol. 2014;51(2):376–87.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Nahar N, Mondal UK, Hossain MJ, Khan MS, Sultana R, Gurley ES, et al. Piloting the promotion of bamboo skirt barriers to prevent Nipah virus transmission through date palm sap in Bangladesh. Glob Health Promot. 2014;21(4):7–15.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Sazzad HM, Luby SP, Stroher U, Daszak P, Sultana S, Afroj S, et al. Exposure-based screening for Nipah virus encephalitis. Bangladesh Emerg Infect Dis. 2015;21(2):349–51.

    Article  CAS  PubMed  Google Scholar 

  75. Benencia F, Courreges MC. Antiviral activity of sandalwood oil against herpes simplex viruses-1 and -2. Phytomedicine. 1999;6(2):119–23.

    Article  CAS  PubMed  Google Scholar 

  76. Chakraborty A, Sazzad HM, Hossain MJ, Islam MS, Parveen S, Husain M, et al. Evolving epidemiology of Nipah virus infection in Bangladesh: evidence from outbreaks during 2010-2011. Epidemiol Infect. 2016;144(2):371–80.

    Article  CAS  PubMed  Google Scholar 

  77. Parveen S, Islam MS, Begum M, Alam MU, Sazzad HM, Sultana R, et al. It’s not only what you say, it’s also how you say it: communicating nipah virus prevention messages during an outbreak in Bangladesh. BMC Public Health. 2016;16:726.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Hegde ST, Sazzad HM, Hossain MJ, Alam MU, Kenah E, Daszak P, et al. Investigating rare risk factors for Nipah virus in Bangladesh: 2001-2012. Ecohealth. 2016;13(4):720–8.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Misra BB, Dey S. TLC-bioautographic evaluation of in vitro anti-tyrosinase and anti-cholinesterase potentials of sandalwood oil. Nat Prod Commun. 2013;8(2):253–6.

    CAS  PubMed  Google Scholar 

  80. Nahar N, Paul RC, Sultana R, Gurley ES, Garcia F, Abedin J, et al. Raw sap consumption habits and its association with knowledge of Nipah virus in two endemic districts in Bangladesh. PLoS One. 2015;10(11):e0142292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Opdyke DLJ: Monographs on fragrance raw materials, Pergamon Press, 1974.

  82. Rudzki E, Grzywa Z. Balsam of Peru as screening agent for essential oils sensitivity. Dermatologica. 1977;155(2):115–21.

    Article  CAS  PubMed  Google Scholar 

  83. Hayakawa R, Matsunaga K, Arima Y. Depigmented contact dermatitis due to incense. Contact Dermatitis. 1987;16(5):272–4.

    Article  CAS  PubMed  Google Scholar 

  84. Warshaw EM, Zug KA, Belsito DV, Fowler JF Jr, DeKoven JG, Sasseville D, et al. Positive patch-test reactions to essential oils in consecutive patients from North America and Central Europe. Dermatitis. 2017;28(4):246–52.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Viral Bakhai of ViralAnimationz (https://viralanimationz.wixsite.com/website) for his assistance in drawing the electronic version of Fig. 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujit Nair.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cancer Chemoprevention

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, R., Nair, S. Sandalwood Oil for the Chemoprevention of Skin Cancer: Mechanistic Insights, Anti-inflammatory, and In Vivo Anticancer Potential. Curr Pharmacol Rep 5, 345–358 (2019). https://doi.org/10.1007/s40495-019-00195-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40495-019-00195-4

Keywords

Navigation