Skip to main content
Log in

Integrating New Technologies into the Treatment of CP and DCD

  • Disorders of Motor (PH Wilson, Section Editor)
  • Published:
Current Developmental Disorders Reports Aims and scope Submit manuscript

Abstract

This paper examines how current understandings of childhood participation and motor development provide opportunities for using new technologies (such as virtual reality—VR) for children with neurodevelopmental disorders. Specifically, the International Classification of Functioning, Disability and Health is used to conceptualize the role of technology in treatment across body structures and body function, activity performance, and participation (WHO 2007, 2012). First, we review the particular motor control and learning mechanisms that have been implicated in children with atypical motor development, like DCD. This section will highlight avenues for targeted remediation. Next, VR-based rehabilitation systems are reviewed in relation to neurodevelopmental disorders, focusing first on CP and second on more recent applications for children with DCD. We describe the evolution of particular design innovations in virtual rehabilitation including recent advances using tangible interfaces, as well as other methods targeting cognitive function more specifically. Benefits of these various treatments will be viewed through the lens of current theory and evaluated at the level of child and family outcomes. Finally, we consider the broader aspects of the potential for technological innovation in rehabilitation and its impact on brain function, activity competence, and longer-term participation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. WHO. International classification of functioning. Disability and Health (ICF). Geneva: World Health Organisation; 2007.

  2. WHO. Implementing the merger of the ICF and ICF-CY. Geneva: World Health Organisation; 2012.

    Google Scholar 

  3. Bilbao A, Kennedy C, Chatterji S, Üstün B, Barquero JLV, Barth JT. The ICF: applications of the WHO model of functioning, disability and health to brain injury rehabilitation. NeuroRehabilitation. 2003;18(3):239–50.

    PubMed  Google Scholar 

  4. Anderson DI, Campos JJ, Barbu-Roth MA. A developmental perspective on visual proprioception. In: Bremner G, Slater A, editors. Theories of infant development. Oxford: Blackwell; 2004. p. 30–69.

  5. Hyde C, Wilson P. Online motor control in children with developmental coordination disorder: chronometric analysis of double‐step reaching performance. Child Care Health Dev. 2011;37(1):111–22.

    Article  CAS  PubMed  Google Scholar 

  6. Hyde C, Wilson PH. Dissecting online control in Developmental Coordination Disorder: a kinematic analysis of double-step reaching. Brain Cogn. 2011;75(3):232–41.

    Article  PubMed  Google Scholar 

  7. Diedrichsen J, White O, Newman D, Lally N. Use-dependent and error-based learning of motor behaviors. J Neurosci. 2010;30(15):5159–66.

    Article  CAS  PubMed  Google Scholar 

  8. Shadmehr R, Smith MA, Krakauer JW. Error correction, sensory prediction, and adaptation in motor control. Annu Rev Neurosci. 2010;33:89–108.

    Article  CAS  PubMed  Google Scholar 

  9. Desmurget M, Grafton S. Feedback or feedforward control: end of a dichotomy. Taking action: cognitive neuroscience perspectives on intentional acts. In: Johnson-Frey S, editor. Taking action: Cognitive neuroscience perspective on intentional acts. Cambridge: MIT Press; 2003. p. 289.

  10. Sukerkar P. EEG source localization of visual and proprioceptive error processing during visually-guided target tracking with the wrist. Master’s Theses (2009). Paper 70. 2010. http://epublications.marquette.edu/theses_open/70.

  11. Hyde CE, Wilson PH. Impaired online control in children with developmental coordination disorder reflects developmental immaturity. Dev Neuropsychol. 2013;38(2):81–97.

    Article  PubMed  Google Scholar 

  12. Konczak J, Jansen-Osmann P, Kalveram K-T. Development of force adaptation during childhood. J Mot Behav. 2003;35(1):41–52.

    Article  PubMed  Google Scholar 

  13. Smits-Engelsman B, Wilson P, Westenberg Y, Duysens J. Fine motor deficiencies in children with developmental coordination disorder and learning disabilities: an underlying open-loop control deficit. Hum Mov Sci. 2003;22(4):495–513.

    Article  CAS  PubMed  Google Scholar 

  14. Hay L, Redon C. Feedforward versus feedback control in children and adults subjected to a postural disturbance. Exp Brain Res. 1999;125(2):153–62.

    Article  CAS  PubMed  Google Scholar 

  15. Dubrowski A, Bock O, Carnahan H, Jüngling S. The coordination of hand transport and grasp formation during single- and double-perturbed human prehension movements. Exp Brain Res. 2002;145(3):365–71.

    Article  CAS  PubMed  Google Scholar 

  16. Saunders JA, Knill DC. Humans use continuous visual feedback from the hand to control both the direction and distance of pointing movements. Exp Brain Res. 2005;162(4):458–73.

    Article  PubMed  Google Scholar 

  17. Van Braeckel K, Butcher PR, Geuze RH, Stremmelaar EF, Bouma A. Movement adaptations in 7- to 10-year-old typically developing children: evidence for a transition in feedback-based motor control. Hum Mov Sci. 2007;26(6):927–42.

    Article  PubMed  Google Scholar 

  18. Johnson MH. Developmental cognitive neuroscience. 3rd ed. Wiley-Blackwell; 2010.

  19. Durston S, Davidson MC, Tottenham N, Galvan A, Spicer J, Fossella JA, et al. A shift from diffuse to focal cortical activity with development. Dev Sci. 2006;9(1):1–8.

    Article  PubMed  Google Scholar 

  20. Brocki KC, Bohlin G. Executive functions in children aged 6 to 13: a dimensional and developmental study. Dev Neuropsychol. 2004;26(2):571–93.

    Article  PubMed  Google Scholar 

  21. Suchy Y. Executive functioning: overview, assessment, and research issues for non-neuropsychologists. Ann Behav Med. 2009;37(2):106–16.

    Article  PubMed  Google Scholar 

  22. Chaminade T, Meltzoff AN, Decety J. Does the end justify the means? A PET exploration of the mechanisms involved in human imitation. Neuroimage. 2002;15(2):318–28.

    Article  PubMed  Google Scholar 

  23. Ruddock SR, Hyde CE, Piek JP, Sugden D, Morris S, Wilson PH. Executive systems constrain the flexibility of online control in children during goal-directed reaching. Dev Neuropsychol. 2014;39(1):51–68.

    Article  PubMed  Google Scholar 

  24. Somerville LH, Hare T, Casey BJ. Frontostriatal maturation predicts cognitive control failure to appetitive cues in adolescents. J Cogn Neurosci. 2011;23(9):2123–34. doi:10.1162/jocn.2010.21572.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Eyre J, Taylor J, Villagra F, Smith M, Miller S. Evidence of activity-dependent withdrawal of corticospinal projections during human development. Neurology. 2001;57(9):1543–54.

    Article  CAS  PubMed  Google Scholar 

  26. French B, Thomas LH, Leathley MJ, Sutton CJ, McAdam J, Forster A, et al. Repetitive task training for improving functional ability after stroke. Cochrane Database Syst Rev. 2007;4(4). doi:10.1002/14651858.CD006073.pub2.

  27. Kuhnke N, Juenger H, Walther M, Berweck S, Mall V, Staudt M. Do patients with congenital hemiparesis and ipsilateral corticospinal projections respond differently to constraint‐induced movement therapy? Dev Med Child Neurol. 2008;50(12):898–903.

    Article  CAS  PubMed  Google Scholar 

  28. Sutcliffe TL, Logan WJ, Fehlings DL. Pediatric constraint-induced movement therapy is associated with increased contralateral cortical activity on functional magnetic resonance imaging. J Child Neurol. 2009;24(10):1230–5.

    Article  PubMed  Google Scholar 

  29. Brown-Lum M, Zwicker JG. Brain imaging increases our understanding of developmental coordination disorder: a review of literature and future directions. Curr Dev Disord Rep. 2015;2(2):131–40.

    Article  Google Scholar 

  30. Peters LH, Maathuis CG, Hadders‐Algra M. Neural correlates of developmental coordination disorder. Dev Med Child Neurol. 2013;55(s4):59–64.

    Article  PubMed  Google Scholar 

  31. Zwicker JG, Missiuna C, Harris SR, Boyd LA. Developmental coordination disorder: a review and update. Eur J Paediatr Neurol. 2012;16(6):573–81.

    Article  PubMed  Google Scholar 

  32. Debrabant J, Vingerhoets G, Van Waelvelde H, Leemans A, Taymans T, Caeyenberghs K. Brain connectomics of visual-motor deficits in children with developmental coordination disorder. J Pediatr. 2016;169:21–7.e2.

  33. Langevin LM, MacMaster FP, Crawford S, Lebel C, Dewey D. Common white matter microstructure alterations in pediatric motor and attention disorders. J Pediatr. 2014;164(5):1157–64. e1151.

    Article  PubMed  Google Scholar 

  34. McLeod KR, Langevin LM, Goodyear BG, Dewey D. Functional connectivity of neural motor networks is disrupted in children with developmental coordination disorder and attention-deficit/hyperactivity disorder. NeuroImage Clin. 2014;4:566–75.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Zwicker JG, Missiuna C, Harris SR, Boyd LA. Developmental coordination disorder: a pilot diffusion tensor imaging study. Pediatr Neurol. 2012;46(3):162–7.

    Article  PubMed  Google Scholar 

  36. Debrabant J, Gheysen F, Caeyenberghs K, Van Waelvelde H, Vingerhoets G. Neural underpinnings of impaired predictive motor timing in children with Developmental Coordination Disorder. Res Dev Disabil. 2013;34(5):1478–87.

    Article  PubMed  Google Scholar 

  37. Licari MK, Billington J, Reid SL, Wann JP, Elliott CM, Winsor AM, et al. Cortical functioning in children with developmental coordination disorder: a motor overflow study. Exp Brain Res. 2015;233(6):1703–10.

    Article  PubMed  Google Scholar 

  38. Zwicker JG, Missiuna C, Harris SR, Boyd LA. Brain activation associated with motor skill practice in children with developmental coordination disorder: an fMRI study. Int J Dev Neurosci. 2011;29(2):145–52.

    Article  PubMed  Google Scholar 

  39. Chicoine AJ, Lassonde M, Proteau L. Developmental aspects of sensorimotor integration. Dev Neuropsychol. 1992;8(4):381–94.

    Article  Google Scholar 

  40. Wilson P, Ruddock S, Smits-Engelsman B, Polatajko H, Blank R. Understanding performance deficits in Developmental Coordination Disorder: a meta-analysis of recent research. Dev Med Child Neurol. 2013;55(3):217–28.

  41. Livesey D, Keen J, Rouse J, White F. The relationship between measures of executive function, motor performance and externalising behaviour in 5- and 6-year-old children. Hum Mov Sci. 2006;25(1):50–64.

    Article  PubMed  Google Scholar 

  42. Piek JP, Dyck MJ, Francis M, Conwell A. Working memory, processing speed, and set‐shifting in children with developmental coordination disorder and attention‐deficit–hyperactivity disorder. Dev Med Child Neurol. 2007;49(9):678–83.

    Article  PubMed  Google Scholar 

  43. Saban MT, Ornoy A, Parush S. Executive function and attention in young adults with and without Developmental Coordination Disorder—a comparative study. Res Dev Disabil. 2014;35(11):2644–50.

    Article  Google Scholar 

  44. Dijk H, Jannink MJ, Hermens HJ. Effect of augmented feedback on motor function of the affected upper extremity in rehabilitation patients: a systematic review of randomized controlled trials. J Rehabil Med. 2005;37(4):202–11.

    Article  PubMed  Google Scholar 

  45. van Dijk H, Hermens HJ. Effects of age and timing of augmented feedback on learning muscle relaxation while performing a gross motor task. Am J Phys Med Rehabil. 2006;85(2):148–55.

    Article  PubMed  Google Scholar 

  46. Gordon A, Magill R. Motor learning: application of principles to pediatric rehabilitation. Physical therapy for children. Philadelphia: Elsevier; 2012. p. 151–75.

    Google Scholar 

  47. Magill RA. Motor control and learning: concepts and applications. Dubuque: McGraw-Hill; 2004.

    Google Scholar 

  48. Todorov E, Shadmehr R, Bizzi E. Augmented feedback presented in a virtual environment accelerates learning of a difficult motor task. J Mot Behav. 1997;29(2):147–58.

    Article  CAS  PubMed  Google Scholar 

  49. Wulf G, Chiviacowsky S, Schiller E, Ávila LTG. Frequent external-focus feedback enhances motor learning. Front Psychol. 2010;1(190):1–7.

    Google Scholar 

  50. Wulf G, Shea C, Lewthwaite R. Motor skill learning and performance: a review of influential factors. Med Educ. 2010;44(1):75–84.

    Article  PubMed  Google Scholar 

  51. Wulf G, Prinz W. Directing attention to movement effects enhances learning: a review. Psychon Bull Rev. 2001;8(4):648–60.

    Article  CAS  PubMed  Google Scholar 

  52. Hommel B, Musseler J, Aschersleben G, Prinz W. The Theory of Event Coding (TEC): a framework for perception and action planning. Behav Brain Sci. 2001;24(5):849–78. discussion 878–937.

    Article  CAS  PubMed  Google Scholar 

  53. Prinz W. Perception and action planning. Eur J Cogn Psychol. 1997;9(2):129–54.

    Article  Google Scholar 

  54. Piron L, Tombolini P, Turolla A, Zucconi C, Agostini M, Dam M, et al. Reinforced feedback in virtual environment facilitates the arm motor recovery in patients after a recent stroke. Paper presented at the Virtual Rehabilitation. 2007.

  55. Durham K, Van Vliet PM, Badger F, Sackley C. Use of information feedback and attentional focus of feedback in treating the person with a hemiplegic arm. Physiother Res Int. 2009;14(2):77–90.

    Article  PubMed  Google Scholar 

  56. Green D, Schertz M, Gordon AM, Moore A, Schejter Margalit T, Farquharson Y, et al. A multi‐site study of functional outcomes following a themed approach to hand–arm bimanual intensive therapy for children with hemiplegia. Dev Med Child Neurol. 2013;55(6):527–33.

    Article  PubMed  Google Scholar 

  57. Ishii H, Ullmer B. Tangible bits: towards seamless interfaces between people, bits and atoms. Paper presented at the Proceedings of the ACM SIGCHI Conference on Human factors in computing systems. 1997.

  58. Dourish P. Where the action is: the foundations of embodied interaction. New ed. Cambridge: MIT Press; 2004.

  59. Green D, Wilson P. Applications of VR technologies for childhood disability. Virtual reality for physical and motor rehabilitation. In: Weiss T, editor. Virtual reality technologies for health and clinical application. New York: Springer; 2014. p. 203–216.

  60. Cobb S, Brooks AL, Sharkey PM. Virtual reality technologies and the creative arts in the areas of disability, therapy, health, and rehabilitation. In: Kumar S, Cohn ER, editors.x Telerehabilitation. London: Springer; 2013. p. 239–261.

  61. Duckworth J, Mumford N, Caeyenberghs K, Eldridge R, Mayson S, Thomas PR, et al. Resonance: an interactive tabletop artwork for co-located group rehabilitation and play. Universal Access in Human-Computer Interaction. Access to Learning, Health and Well-Being. In: Antona M, Stephanidis C, editors. Lecture Notes in Computer Science. vol. 9177. Switzerland: Springer; 2015. p. 420–431.

  62. Mumford N, Duckworth J, Thomas PR, Shum D, Williams G, Wilson PH. Upper limb virtual rehabilitation for traumatic brain injury: initial evaluation of the elements system. Brain Inj. 2010;24(5):780–91.

    Article  PubMed  Google Scholar 

  63. Snider L, Majnemer A, Darsaklis V. Virtual reality as a therapeutic modality for children with cerebral palsy. Dev Neurorehabil. 2010;13(2):120–8.

    Article  PubMed  Google Scholar 

  64. Galvin J, Levac D. Facilitating clinical decision-making about the use of virtual reality within paediatric motor rehabilitation: describing and classifying virtual reality systems. Dev Neurorehabil. 2011;14(2):112–22.

    Article  PubMed  Google Scholar 

  65. Laufer Y, Weiss PTL. Virtual reality in the assessment and treatment of children with motor impairment: a systematic review. J Phys Ther Educ. 2011;25(1):59.

    Google Scholar 

  66. Reid D, Campbell K. The use of virtual reality with children with cerebral palsy: a pilot randomized trial. Ther Recreat J. 2006;40(4):255.

    Google Scholar 

  67. Jannink MJ, Van Der Wilden GJ, Navis DW, Visser G, Gussinklo J, Ijzerman M. A low-cost video game applied for training of upper extremity function in children with cerebral palsy: a pilot study. Cyberpsychol Behav. 2008;11(1):27–32.

    Article  PubMed  Google Scholar 

  68. Chen Y-P, Kang L-J, Chuang T-Y, Doong J-L, Lee S-J, Tsai M-W, et al. Use of virtual reality to improve upper-extremity control in children with cerebral palsy: a single-subject design. Phys Ther. 2007;87(11):1441–57.

    Article  PubMed  Google Scholar 

  69. You SH, Jang SH, Kim Y-H, Kwon Y-H, Barrow I, Hallett M. Cortical reorganization induced by virtual reality therapy in a child with hemiparetic cerebral palsy. Dev Med Child Neurol. 2005;47(09):628–35.

    Article  PubMed  Google Scholar 

  70. James S, Ziviani J, Ware RS, Boyd RN. Randomized controlled trial of web‐based multimodal therapy for unilateral cerebral palsy to improve occupational performance. Dev Med Child Neurol. 2015;57(6):530–8.

    Article  PubMed  Google Scholar 

  71. Sakzewski et al. Efficacy of upper limb interventions for children with unilateral cerebral palsy: a systematic review and meta-analysis update. Pediatrics. 2014;133:e175–204.

    Article  PubMed  Google Scholar 

  72. Weinstein M, Green D, Geva R, Schertz M, Fattal-Valevski A, Artzi M, et al. Interhemispheric and intrahemispheric connectivity and manual skills in children with unilateral cerebral palsy. Brain Struct Funct. 2013;219:1025–40.

  73. Subramanian SK, Massie CL, Malcolm MP, Levin MF. Does provision of extrinsic feedback result in improved motor learning in the upper limb poststroke? A systematic review of the evidence. Neurorehabil Neural Repair. 2010;24(2):113–24.

    Article  PubMed  Google Scholar 

  74. Jelsma J, Pronk M, Ferguson G, Jelsma-Smit D. The effect of the Nintendo Wii Fit on balance control and gross motor function of children with spastic hemiplegic cerebral palsy. Dev Neurorehabil. 2013;16(1):27–37.

    Article  PubMed  Google Scholar 

  75. Deutsch JE, Borbely M, Filler J, Huhn K, Guarrera-Bowlby P. Use of a low-cost, commercially available gaming console (Wii) for rehabilitation of an adolescent with cerebral palsy. Phys Ther. 2008;88(10):1196–207.

    Article  PubMed  Google Scholar 

  76. Laver K, George S, Ratcliffe J, Crotty M. Virtual reality stroke rehabilitation—hype or hope? Aust Occup Ther J. 2011;58(3):215–9.

    Article  PubMed  Google Scholar 

  77. Golomb MR, McDonald BC, Warden SJ, Yonkman J, Saykin AJ, Shirley B, et al. In-home virtual reality videogame telerehabilitation in adolescents with hemiplegic cerebral palsy. Arch Phys Med Rehabil. 2010;91(1):1–8. e1.

    Article  PubMed  Google Scholar 

  78. Hammond J, Jones V, Hill EL, Green D, Male I. An investigation of the impact of regular use of the Wii Fit to improve motor and psychosocial outcomes in children with movement difficulties: a pilot study. Child Care Health Dev. 2014;40(2):165–75.

    Article  CAS  PubMed  Google Scholar 

  79. Ferguson G, Jelsma D, Jelsma J, Smits-Engelsman B. The efficacy of two task-orientated interventions for children with Developmental Coordination Disorder: Neuromotor Task Training and Nintendo Wii Fit training. Res Dev Disabil. 2013;34(9):2449–61.

    Article  CAS  PubMed  Google Scholar 

  80. Ashkenazi T, Weiss PL, Orian D, Laufer Y. Low-cost virtual reality intervention program for children with developmental coordination disorder: a pilot feasibility study. Pediatr Phys Ther. 2013;25(4):467–73.

    Article  PubMed  Google Scholar 

  81. Jelsma D, Geuze RH, Mombarg R, Smits-Engelsman BC. The impact of Wii Fit intervention on dynamic balance control in children with probable Developmental Coordination Disorder and balance problems. Hum Mov Sci. 2014;33:404–18.

    Article  PubMed  Google Scholar 

  82. Jelsma D, Ferguson GD, Smits-Engelsman BC, Geuze RH. Short-term motor learning of dynamic balance control in children with probable Developmental Coordination Disorder. Res Dev Disabil. 2015;38:213–22.

    Article  PubMed  Google Scholar 

  83. Straker L, Howie E, Smith A, Jensen L, Piek J, Campbell A. A crossover randomised and controlled trial of the impact of active video games on motor coordination and perceptions of physical ability in children at risk of Developmental Coordination Disorder. Hum Mov Sci. 2015;42:146–60.

  84. Green D, Wilson PH. Use of virtual reality in rehabilitation of movement in children with hemiplegia—a multiple case study evaluation. Disabil Rehabil. 2012;34(7):593–604.

    Article  PubMed  Google Scholar 

  85. Eyre J. Corticospinal tract development and its plasticity after perinatal injury. Neurosci Biobehav Rev. 2007;31(8):1136–49.

    Article  CAS  PubMed  Google Scholar 

  86. Goble DJ, Hurvitz EA, Brown SH. Deficits in the ability to use proprioceptive feedback in children with hemiplegic cerebral palsy. Int J Rehabil Res. 2009;32(3):267–9.

    Article  PubMed  Google Scholar 

  87. Guzzetta A, D’Acunto G, Rose S, Tinelli F, Boyd R, Cioni G. Plasticity of the visual system after early brain damage. Dev Med Child Neurol. 2010;52:891–900.

  88. Martin Bax D, Tydeman C, Flodmark O. Clinical and MRI correlates of cerebral palsy. JAMA. 2006;296:1602–8.

    Article  PubMed  Google Scholar 

  89. Löwing K, Bexelius A, Brogren Carlberg E. Activity focused and goal directed therapy for children with cerebral palsy—do goals make a difference? Disabil Rehabil. 2009;31(22):1808–16.

    Article  PubMed  Google Scholar 

  90. Akhutina T y, Foreman N, Krichevets A, Matikka L, Narhi V, Pylaeva N, et al. Improving spatial functioning in children with cerebral palsy using computerized and traditional game tasks. Disabil Rehabil. 2003;25(24):1361–71.

    Article  PubMed  Google Scholar 

  91. Weiss PL, Bialik P, Kizony R. Virtual reality provides leisure time opportunities for young adults with physical and intellectual disabilities. Cyberpsychol Behav. 2003;6(3):335–42.

    Article  PubMed  Google Scholar 

  92. Kirshner S, Weiss PL, Tirosh E. Meal-maker: a virtual meal preparation environment for children with cerebral palsy. Eur J Spec Needs Educ. 2011;26(3):323–36.

    Article  Google Scholar 

  93. Standen PJ, Brown DJ, Cromby J. The effective use of virtual environments in the education and rehabilitation of students with intellectual disabilities. Br J Educ Technol. 2001;32(3):289–99.

    Article  Google Scholar 

  94. Mumford N, Duckworth J, Thomas PR, Shum D, Williams G, Wilson PH. Upper-limb virtual rehabilitation for traumatic brain injury: a preliminary within-group evaluation of the elements system. Brain Inj. 2012;26(2):166–76.

    Article  PubMed  Google Scholar 

  95. Mumford N, Wilson PH. Virtual reality in acquired brain injury upper limb rehabilitation: evidence-based evaluation of clinical research. Brain Inj. 2009;23(3):179–91.

    Article  PubMed  Google Scholar 

  96. Morganti F, Goulene K, Gaggioli A, Stramba-Badiale M, Riva G. Grasping virtual objects: a feasibility study for an enactive interface application in stroke. PsychNology J. 2006;4(2):181–97.

    Google Scholar 

  97. Snapp-Childs W, Mon-Williams M, Bingham GP. A sensorimotor approach to the training of manual actions in children with developmental coordination disorder. J Child Neurol. 2013;28(2):204–12.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Cicerone KD, Langenbahn DM, Braden C, Malec JF, Kalmar K, Fraas M, et al. Evidence-based cognitive rehabilitation: updated review of the literature from 2003 through 2008. Arch Phys Med Rehab. 2011;92(4):519–30.

    Article  Google Scholar 

  99. Slomine B, Locascio G. Cognitive rehabilitation for children with acquired brain injury. Dev Disabil Res Rev. 2009;15(2):133–43.

    Article  PubMed  Google Scholar 

  100. Luciana M, Lindeke L, Georgieff M, Mills M, Nelson CA. Neurobehavioral evidence for working-memory deficits in school-aged children with histories of prematurity. Dev Med Child Neurol. 1999;41(08):521–33.

    Article  CAS  PubMed  Google Scholar 

  101. Sigurdardottir S, Indredavik MS, Eiriksdottir A, Einarsdottir K, Gudmundsson HS, Vik T. Behavioural and emotional symptoms of preschool children with cerebral palsy: a population‐based study. Dev Med Child Neurol. 2010;52(11):1056–61.

    Article  PubMed  Google Scholar 

  102. Tsai C-L, Wang C-H, Tseng Y-T. Effects of exercise intervention on event-related potential and task performance indices of attention networks in children with developmental coordination disorder. Brain Cogn. 2012;79(1):12–22.

    Article  PubMed  Google Scholar 

  103. Løhaugen GC, Beneventi H, Andersen GL, Sundberg C, Østgård HF, Bakkan E, et al. Do children with cerebral palsy benefit from computerized working memory training? Study protocol for a randomized controlled trial. Trials. 2014;15(1):269.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Astle DE, Barnes JJ, Baker K, Colclough GL, Woolrich MW. Cognitive training enhances intrinsic brain connectivity in childhood. J Neurosci. 2015;35(16):6277–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Klingberg T, Forssberg H, Westerberg H. Training of working memory in children with ADHD. J Clin Exp Neuropsychol. 2002;24(6):781–91.

    Article  PubMed  Google Scholar 

  106. Rideout VJ, Foehr UG, Roberts DF. Generation M: media in the lives of 8- to 18-year-olds. Henry J. Kaiser Family Foundation. 2010. http://kff.org/other/generation-m-media-in-the-lives-of/.

  107. Rideout VJ, Vandewater EA, Wartella EA. Zero to six: electronic media in the lives of infants, toddlers and preschoolers. 2003. http://kff.org/other/report/zero-to-six-electronic-media-in-the/.

  108. Green D, Meroz A, Margalit AE, Ratzon NZ. A validation study of the Keyboard Personal Computer Style instrument (K-PeCS) for use with children. Appl Ergon. 2012;43(6):985–92.

    Article  PubMed  Google Scholar 

  109. Reid D. The influence of virtual reality on playfulness in children with cerebral palsy: a pilot study. Occup Ther Int. 2004;11(3):131–44.

    Article  PubMed  Google Scholar 

  110. Reid DT. Benefits of a virtual play rehabilitation environment for children with cerebral palsy on perceptions of self-efficacy: a pilot study. Pediatr Rehabil. 2002;5(3):141–8.

    Article  PubMed  Google Scholar 

  111. Anttila H, Autti-Rämö I, Suoranta J, Mäkelä M, Malmivaara A. Effectiveness of physical therapy interventions for children with cerebral palsy: a systematic review. BMC Pediatr. 2008;8(1):14.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Sakzewski L, Ziviani J, Boyd R. Systematic review and meta-analysis of therapeutic management of upper-limb dysfunction in children with congenital hemiplegia. Pediatrics. 2009;123(6):e1111–22.

    Article  PubMed  Google Scholar 

  113. National Institute for Health and Care Excellence (NICE). NICE clinical guidelines. 2012. https://www.nice.org.uk/guidance Accessed 12 Feb 2016.

  114. Hemayattalab R, Rostami LR. Effects of frequency of feedback on the learning of motor skill in individuals with cerebral palsy. Res Dev Disabil. 2010;31(1):212–7.

    Article  PubMed  Google Scholar 

  115. Wilson P. Developmental cognitive neuroscience perspective on motor rehabilitation. In: Sharkey P, Merrick J, editors. Virtual reality: people with special needs. NY: Nova Science Publishers; 2014.

    Google Scholar 

  116. Green D, Wilson PH. Validation of the Elements/RE-ACTION System for use with children: evaluation of performance across developmental stages. Paper presented at the Virtual Rehabilitation (ICVR), 2011 International Conference on. 2011.

  117. Adams IL, Lust JM, Wilson PH, Steenbergen B. Compromised motor control in children with DCD: a deficit in the internal model?—a systematic review. Neurosci Biobehav Rev. 2014;47:225–44.

    Article  PubMed  Google Scholar 

  118. Hétu S, Mercier C. Using purposeful tasks to improve motor performance: does object affordance matter? Br J Occup Ther. 2012;75(8):367–76.

    Article  Google Scholar 

  119. Shuwairi SM, Tran A, DeLoache JS, Johnson SP. Infants’ response to pictures of impossible objects. Infancy. 2010;15:636–49.

    Article  Google Scholar 

  120. Liu W-Y, Zaino CA, McCoy SW. Anticipatory postural adjustments in children with cerebral palsy and children with typical development. Pediatr Phys Ther. 2007;19(3):188–95.

    Article  CAS  PubMed  Google Scholar 

  121. Pezzulo G. Coordinating with the future: the anticipatory nature of representation. Mind Mach. 2008;18(2):179–225.

    Article  Google Scholar 

  122. Steenbergen B, Gordon AM. Activity limitation in hemiplegic cerebral palsy: evidence for disorders in motor planning. Dev Med Child Neurol. 2006;48(09):780–3.

    Article  PubMed  Google Scholar 

  123. Pridmore T, Hilton D, Green J, Eastgate R, Cobb S. Mixed reality environments in stroke rehabilitation: interfaces across the real/virtual divide. Paper presented at the Proceedings of the 5th International Conference on Disability, Virtual Reality & Associated Technology: 20–22 September 2004; Oxford; 2004.

  124. Eaves D, Haythornthwaite L, Vogt S. Motor imagery during action observation modulates automatic imitation effects in rhythmical actions. Front Hum Neurosci. 2014;8:28.

  125. Vogt S, Di Rienzo F, Collet C, Collins A, Guillot A. Multiple roles of motor imagery during action observation. Front Hum Neurosci. 2013;7:a807.

    Article  Google Scholar 

  126. Gal E, Bauminger N, Goren-Bar D, Pianesi F, Stock O, Zancanaro M, et al. Enhancing social communication of children with high-functioning autism through a co-located interface. AI & Soc. 2009;24(1):75–84.

    Article  Google Scholar 

  127. Kandalaft MR, Didehbani N, Krawczyk DC, Allen TT, Chapman SB. Virtual reality social cognition training for young adults with high-functioning autism. J Autism Dev Disord. 2013;43(1):34–44.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Weiss PL, Gal E, Eden S, Zancanaro M, Telch F. Usability of a multi-touch tabletop surface to enhance social competence training for children with Autism Spectrum Disorder. Paper presented at the Proceedings of the Chais conference on instructional technologies research. 2011.

  129. Imms C, Mathews S, Richmond K, Law M, Ullenhag A. Optimising leisure participation: A pilot intervention study for adolescents with physical impairments. Disabil Rehabil. 2016;38:963–71.

  130. Duckworth JD, Wilson PH. Embodiment and play in designing an interactive art system for movement rehabilitation. Second Nature. 2010;2(1),120–37.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Wilson.

Ethics declarations

Conflict of Interest

Peter Wilson, Dido Green, Karen Caeyenberghs, Bert Steenbergen, and Jonathan Duckworth declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Disorders of Motor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilson, P., Green, D., Caeyenberghs, K. et al. Integrating New Technologies into the Treatment of CP and DCD. Curr Dev Disord Rep 3, 138–151 (2016). https://doi.org/10.1007/s40474-016-0083-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40474-016-0083-9

Keywords

Navigation