Skip to main content

Advertisement

Log in

Computational Psychiatry in Borderline Personality Disorder

  • Personality and Impulse Control Disorders (R Lee, Section Editor)
  • Published:
Current Behavioral Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

We review the literature on the use and potential use of computational psychiatry methods in borderline personality disorder.

Recent Findings

Computational approaches have been used in psychiatry to increase our understanding of the molecular, circuit, and behavioral basis of mental illness. This is of particular interest in BPD, where the collection of ecologically valid data, especially in interpersonal settings, is becoming more common and more often subject to quantification. Methods that test learning and memory in social contexts, collect data from real-world settings, and relate behavior to molecular and circuit networks are yielding data of particular interest.

Summary

Research in BPD should focus on collaborative efforts to design and interpret experiments with direct relevance to core BPD symptoms and potential for translation to the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Wang XJ, Krystal JH. Computational psychiatry. Neuron. 2014;84(3):638–54. doi:10.1016/j.neuron.2014.10.018. This review paper describes the computational psychiatry approach at multiple levels from behavior to molecules. Figures are especially helpful to clarify concepts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Iglesias S, Tomiello S, Schneebeli M, Stephan KE. Models of neuromodulation for computational psychiatry. Wiley interdisciplinary reviews Cognitive science. 2016; doi:10.1002/wcs.1420.

    PubMed  Google Scholar 

  3. Fineberg SK, Steinfeld M, Brewer JA, Corlett PR. A computational account of borderline personality disorder: impaired predictive learning about self and others through bodily simulation. Front Psychiatry. 2014;5:111. doi:10.3389/fpsyt.2014.00111.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chekroud AM, Zotti RJ, Shehzad Z, Gueorguieva R, Johnson MK, Trivedi MH, et al. Cross-trial prediction of treatment outcome in depression: a machine learning approach. Lancet Psychiatry. 2016;3(3):243–50. doi:10.1016/S2215-0366(15)00471-X.

    Article  PubMed  Google Scholar 

  5. Finn ES, Shen X, Scheinost D, Rosenberg MD, Huang J, Chun MM, et al. Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nat Neurosci. 2015;18(11):1664–71. doi:10.1038/nn.4135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ho NF, Iglesias JE, Sum MY, Kuswanto CN, Sitoh YY, De Souza J, et al. Progression from selective to general involvement of hippocampal subfields in schizophrenia. Mol Psychiatry. 2016; doi:10.1038/mp.2016.4.

    PubMed Central  Google Scholar 

  7. Stephan KE, Iglesias S, Heinzle J, Diaconescu AO. Translational perspectives for computational neuroimaging. Neuron. 2015;87(4):716–32. doi:10.1016/j.neuron.2015.07.008.

    Article  CAS  PubMed  Google Scholar 

  8. Behrens TE, Hunt LT, Woolrich MW, Rushworth MF. Associative learning of social value. Nature. 2008;456(7219):245–9. doi:10.1038/nature07538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. •• Sevgi M, Diaconescu AO, Tittgemeyer M, Schilbach L. Social Bayes: using Bayesian modeling to study autistic trait-related differences in social cognition. Biol Psychiatry. 2015; doi:10.1016/j.biopsych.2015.11.025. This paper describes a computer-based game that requires subjects to weigh social and non-social cues to make decisions. The task is applied to people with varying levels of autistic traits. A computational learning model, the Hierarchical Gaussian Filter, is used to measure differences in social and non-social learning behavior.

    PubMed  Google Scholar 

  10. Stanley B, Siever LJ. The interpersonal dimension of borderline personality disorder: toward a neuropeptide model. Am J Psychiatry. 2010;167(1):24–39. doi:10.1176/appi.ajp.2009.09050744.

    Article  PubMed  Google Scholar 

  11. Hawthorne G. Perceived social isolation in a community sample: its prevalence and correlates with aspects of peoples’ lives. Soc Psychiatry Psychiatr Epidemiol. 2008;43(2):140–50. doi:10.1007/s00127-007-0279-8.

    Article  PubMed  Google Scholar 

  12. Bernstein MJ, Claypool HM. Social exclusion and pain sensitivity: why exclusion sometimes hurts and sometimes numbs. Personality & social psychology bulletin. 2012;38(2):185–96. doi:10.1177/0146167211422449.

    Article  Google Scholar 

  13. •• Schneider P, Bindila, L., Schmahl, C., Bohus, M., Meyer-Lindenberg, A., Lutz, B., Spanagel, R., Schneider, M. Adverse social experiences in adolescent rats result in enduring effects on social competence, pain sensitivity, and endocannabinoid signaling. Frontiers in behavioral neuroscience. 2016;10. This paper describes a rat model of early-life social rejection that mimics many of the adult behaviors of people with BPD, such as decreased trust of peers and decreased pain sensitivity. This model holds promise for translational and reverse-translational experimental pipelines in BPD.

  14. •• Schilbach L, Timmermans B, Reddy V, Costall A, Bente G, Schlicht T, et al. Toward a second-person neuroscience. Behav Brain Sci. 2013;36(4):393–414. doi:10.1017/S0140525X12000660. This review and commentary puts forth the position that we are doing social neuroscience wrong: instead of studying people in isolation (first person) or people with dry unmoving social cues like faces (third person), we should instead study people in interactive contexts to learn the most about their social cognition. This will be second-person neuroscience.

    Article  PubMed  Google Scholar 

  15. Gunderson JG. Disturbed relationships as a phenotype for borderline personality disorder. Am J Psychiatry. 2007;164(11):1637–40. doi:10.1176/appi.ajp.2007.07071125.

    Article  PubMed  Google Scholar 

  16. Li CS, Sinha R. Alexithymia and stress-induced brain activation in cocaine-dependent men and women. Journal of psychiatry & neuroscience : JPN. 2006;31(2):115–21.

    Google Scholar 

  17. Milivojevic V, Fox HC, Sofuoglu M, Covault J, Sinha R. Effects of progesterone stimulated allopregnanolone on craving and stress response in cocaine dependent men and women. Psychoneuroendocrino. 2016;65:44–53. doi:10.1016/j.psyneuen.2015.12.008.

    Article  CAS  Google Scholar 

  18. Kraus A, Valerius G, Seifritz E, Ruf M, Bremner JD, Bohus M, et al. Script-driven imagery of self-injurious behavior in patients with borderline personality disorder: a pilot FMRI study. Acta Psychiatr Scand. 2010;121(1):41–51. doi:10.1111/j.1600-0447.2009.01417.x.

    Article  CAS  PubMed  Google Scholar 

  19. Miano A, Fertuck, E., Roepke, S., Dziobek, I. Romantic relationship dysfunction in borderline personality disorder—a naturalistic approach to trustworthiness perception. Personality disorders. 2016.

  20. Hartgerink CH, van Beest I, Wicherts JM, Williams KD. The ordinal effects of ostracism: a meta-analysis of 120 Cyberball studies. PLoS One. 2015;10(5):e0127002. doi:10.1371/journal.pone.0127002.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Domsalla M, Koppe G, Niedtfeld I, Vollstadt-Klein S, Schmahl C, Bohus M, et al. Cerebral processing of social rejection in patients with borderline personality disorder. Soc Cogn Affect Neurosci. 2014;9(11):1789–97. doi:10.1093/scan/nst176.

    Article  PubMed  Google Scholar 

  22. De Panfilis C, Riva P, Preti E, Cabrino C, Marchesi C. When social inclusion is not enough: implicit expectations of extreme inclusion in borderline personality disorder. Personality disorders. 2015;6(4):301–9. doi:10.1037/per0000132.

    Article  PubMed  Google Scholar 

  23. Bungert M, Koppe G, Niedtfeld I, Vollstadt-Klein S, Schmahl C, Lis S, et al. Pain processing after social exclusion and its relation to rejection sensitivity in borderline personality disorder. PLoS One. 2015;10(8):e0133693. doi:10.1371/journal.pone.0133693.

    Article  PubMed  PubMed Central  Google Scholar 

  24. McCall C. Mapping social interactions: the science of proxemics. Curr Top Behav Neurosci. 2016; doi:10.1007/7854_2015_431.

    Google Scholar 

  25. Tzieropoulos H. The trust game in neuroscience: a short review. Soc Neurosci. 2013;8(5):407–16. doi:10.1080/17470919.2013.832375.

    Article  PubMed  Google Scholar 

  26. Rilling JK, Sanfey AG. The neuroscience of social decision-making. Annu Rev Psychol. 2011;62:23–48. doi:10.1146/annurev.psych.121208.131647.

    Article  PubMed  Google Scholar 

  27. Unoka Z, Seres I, Aspan N, Bodi N, Keri S. Trust game reveals restricted interpersonal transactions in patients with borderline personality disorder. J Personal Disord. 2009;23(4):399–409. doi:10.1521/pedi.2009.23.4.399.

    Article  Google Scholar 

  28. •• King-Casas B, Sharp C, Lomax-Bream L, Lohrenz T, Fonagy P, Montague PR. The rupture and repair of cooperation in borderline personality disorder. Science. 2008;321(5890):806–10. doi:10.1126/science.1156902. Behavioral and neuroimaging results are presented from a study of people with BPD playing the trust game. Results include less cooperation in BPD, like coaxing a defecting partner back to play, and diminished ability to detect fair offers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Franzen N, Hagenhoff M, Baer N, Schmidt A, Mier D, Sammer G, et al. Superior ‘theory of mind’ in borderline personality disorder: an analysis of interaction behavior in a virtual trust game. Psychiatry Res. 2011;187(1–2):224–33. doi:10.1016/j.psychres.2010.11.012.

    Article  PubMed  Google Scholar 

  30. Berlin HA, Rolls ET, Iversen SD. Borderline personality disorder, impulsivity, and the orbitofrontal cortex. Am J Psychiatry. 2005;162(12):2360–73. doi:10.1176/appi.ajp.162.12.2360.

    Article  PubMed  Google Scholar 

  31. Dinn WM, Harris CL, Aycicegi A, Greene PB, Kirkley SM, Reilly C. Neurocognitive function in borderline personality disorder. Prog Neuro-Psychopharmacol Biol Psychiatry. 2004;28(2):329–41. doi:10.1016/j.pnpbp.2003.10.012.

    Article  Google Scholar 

  32. Barker V, Pope M, Smith S, Brown V, Hall J. Set shifting and reversal learning in borderline personality disorder. Personal Ment Health. 2014;8(1):1–13. doi:10.1002/pmh.1235.

    Article  PubMed  Google Scholar 

  33. Paret C, Hoesterey S, Kleindienst N, Schmahl C. Associations of emotional arousal, dissociation and symptom severity with operant conditioning in borderline personality disorder. Psychiatry Res. 2016;244:194–201. doi:10.1016/j.psychres.2016.07.054.

    Article  PubMed  Google Scholar 

  34. Haaland VO, Esperaas L, Landro NI. Selective deficit in executive functioning among patients with borderline personality disorder. Psychol Med. 2009;39(10):1733–43. doi:10.1017/s0033291709005285.

    Article  CAS  PubMed  Google Scholar 

  35. Chandler J, Shapiro D. Conducting clinical research using crowdsourced convenience samples. Annu Rev Clin Psychol. 2016;12:53–81. doi:10.1146/annurev-clinpsy-021815-093623.

    Article  PubMed  Google Scholar 

  36. Berinsky AJ, Huber GA, Lenz GS, Alvarez RM. Evaluating online labor markets for experimental research: Amazon.com’s Mechanical Turk. Polit Anal. 2012; doi:10.1093/pan/mpr057.

    Google Scholar 

  37. Huff C, Tingley D. “Who are these people?” evaluating the demographic characteristics and political preferences of MTurk survey respondents. Research & Politics. 2015:2(3). doi:10.1177/2053168015604648.

  38. Hauser DJ, Schwarz N. Attentive Turkers: MTurk participants perform better on online attention checks than do subject pool participants. Behav Res Methods. 2016;48(1):400–7. doi:10.3758/s13428-015-0578-z.

    Article  PubMed  Google Scholar 

  39. Behrend TS, Sharek DJ, Meade AW, Wiebe EN. The viability of crowdsourcing for survey research. Behav Res Methods. 2011;43(3):800–13. doi:10.3758/s13428-011-0081-0.

    Article  PubMed  Google Scholar 

  40. Shapiro DN, Chandler J, Mueller PA. Using Mechanical Turk to study clinical populations. Clinical Psychological Science. 2013; doi:10.1177/2167702612469015.

    Google Scholar 

  41. Mason W, Watts DJ. Collaborative learning in networks. Proc Natl Acad Sci U S A. 2012;109(3):764–9. doi:10.1073/pnas.1110069108.

    Article  CAS  PubMed  Google Scholar 

  42. Lebreton P, Hupont I, Mäki T, Skodras E et al. Eye tracker in the wild: studying the delta between what is said and measured in a crowdsourcing experiment. Proceedings of the Fourth International Workshop on Crowdsourcing for Multimedia; Brisbane, Australia. 2810192: ACM; 2015. p. 3–8.

  43. Trull TJ, Ebner-Priemer U. Ambulatory assessment. Annu Rev Clin Psychol. 2013;9:151–76. doi:10.1146/annurev-clinpsy-050212-185510.

    Article  PubMed  Google Scholar 

  44. Hepp J, Carpenter RW, Lane SP, Trull TJ. Momentary symptoms of borderline personality disorder as a product of trait personality and social context. Personality disorders. 2016;7(4):384–93. doi:10.1037/per0000175.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hopwood CJ, Zanarini MC. Borderline personality traits and disorder: predicting prospective patient functioning. J Consult Clin Psychol. 2010;78(4):585–9. doi:10.1037/a0019003.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Fineberg SK, Leavitt J, Deutsch-Link S, Dealy S, Landry CD, Pirruccio K, et al. Self-reference in psychosis and depression: a language marker of illness. Psychol Med. 2016;46(12):2605–15. doi:10.1017/S0033291716001215.

    Article  CAS  PubMed  Google Scholar 

  47. Hong K, Nenkova A, March ME, Parker AP, Verma R, Kohler CG. Lexical use in emotional autobiographical narratives of persons with schizophrenia and healthy controls. Psychiatry Res. 2015;225(1–2):40–9. doi:10.1016/j.psychres.2014.10.002.

    Article  PubMed  Google Scholar 

  48. Strous RD, Koppel M, Fine J, Nachliel S, Shaked G, Zivotofsky AZ. Automated characterization and identification of schizophrenia in writing. J Nerv Ment Dis. 2009;197(8):585–8. doi:10.1097/NMD.0b013e3181b09068.

    Article  PubMed  Google Scholar 

  49. Junghaenel DU, Smyth JM, Santner L. Linguistic dimensions of psychopathology: a quantitative analysis. J Soc Clin Psychol. 2008;27(1):36–55.

    Article  Google Scholar 

  50. • Bedi G, Carrillo F, Cecchi GA, Slezak DF, Sigman M, Mota NB, Ribeiro S, Javitt DC, Copelli M, Corcoran CM. Automated analysis of free speech predicts psychosis onset in high-risk youths. NPJ Schizophrenia. 2015;1 doi:10.1038/npjschz.2015.30. This paper is a very nice example of using behavioral data (here, language from people with first-episode schizophrenia) in a complex computational framework to predict prognosis.

  51. Ireland ME, Slatcher RB, Eastwick PW, Scissors LE, Finkel EJ, Pennebaker JW. Language style matching predicts relationship initiation and stability. Psychol Sci. 2011;22(1):39–44. doi:10.1177/0956797610392928.

    Article  PubMed  Google Scholar 

  52. • Schulze L, Schmahl C, Niedtfeld I. Neural correlates of disturbed emotion processing in borderline personality disorder: a multimodal meta-analysis. Biol Psychiatry. 2016;79(2):97–106. doi:10.1016/j.biopsych.2015.03.027. This meta-analysis is a well-architected and clearly written update on the state of neuroimaging in BPD focusing on functional responses to negative stimuli.

    Article  PubMed  Google Scholar 

  53. Visintin E, De Panfilis C, Amore M, Balestrieri M, Wolf RC, Sambataro F. Mapping the brain correlates of borderline personality disorder: a functional neuroimaging meta-analysis of resting state studies. J Affect Disord. 2016;204:262–9. doi:10.1016/j.jad.2016.07.025.

    Article  PubMed  Google Scholar 

  54. Xu T, Cullen KR, Mueller B, Schreiner MW, Lim KO, Schulz SC, et al. Network analysis of functional brain connectivity in borderline personality disorder using resting-state fMRI. Neuroimage Clin. 2016;11:302–15. doi:10.1016/j.nicl.2016.02.006.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Herbort MC, Soch J, Wustenberg T, Krauel K, Pujara M, Koenigs M, et al. A negative relationship between ventral striatal loss anticipation response and impulsivity in borderline personality disorder. Neuroimage Clin. 2016;12:724–36. doi:10.1016/j.nicl.2016.08.011.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Schienle A, Wabnegger A, Schongassner F, Leutgeb V. Effects of personal space intrusion in affective contexts: an fMRI investigation with women suffering from borderline personality disorder. Soc Cogn Affect Neurosci. 2015;10(10):1424–8. doi:10.1093/scan/nsv034.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Fineberg SK, Ross, D. . Oxytocin and the Social Brain. Biological psychiatry. 2016.

  58. Marlin BJ, Froemke RC. Oxytocin modulation of neural circuits for social behavior. Dev Neurobiol. 2016; doi:10.1002/dneu.22452.

    PubMed  Google Scholar 

  59. Bartz J, Simeon D, Hamilton H, Kim S, Crystal S, Braun A, et al. Oxytocin can hinder trust and cooperation in borderline personality disorder. Soc Cogn Affect Neurosci. 2011;6(5):55–63. doi: 10.1093/scan/nsq085.

  60. Ruocco AC, Carcone D. A neurobiological model of borderline personality disorder: systematic and integrative review. Harv Rev Psychiatry. 2016;24(5):311–29. doi:10.1097/HRP.0000000000000123.

    Article  PubMed  Google Scholar 

  61. Bouvette-Turcot AA, Unternaehrer E, Gaudreau H, Lydon JE, Steiner M, Meaney MJ, et al. The joint contribution of maternal history of early adversity and adulthood depression to socioeconomic status and potential relevance for offspring development. J Affect Disord. 2016;207:26–31. doi:10.1016/j.jad.2016.08.012.

    Article  PubMed  Google Scholar 

  62. Weaver IC, Cervoni N, Champagne FA, D'Alessio AC, Sharma S, Seckl JR, et al. Epigenetic programming by maternal behavior. Nat Neurosci. 2004;7(8):847–54. doi:10.1038/nn1276.

    Article  CAS  PubMed  Google Scholar 

  63. Turecki G, Meaney MJ. Effects of the social environment and stress on glucocorticoid receptor gene methylation: a systematic review. Biol Psychiatry. 2016;79(2):87–96. doi:10.1016/j.biopsych.2014.11.022.

    Article  CAS  PubMed  Google Scholar 

  64. Teschler S, Gotthardt J, Dammann G, Dammann RH. Aberrant DNA methylation of rDNA and PRIMA1 in borderline personality disorder. Int J Mol Sci. 2016;17(1) doi:10.3390/ijms17010067.

  65. Martin-Blanco A, Ferrer M, Soler J, Arranz MJ, Vega D, Bauza J, et al. An exploratory association study of the influence of noradrenergic genes and childhood trauma in borderline personality disorder. Psychiatry Res. 2015;229(1–2):589–92. doi:10.1016/j.psychres.2015.07.046.

    Article  CAS  PubMed  Google Scholar 

  66. Linehan M. Cognitive-behavioral treatment of borderline personality disorder. Diagnosis and treatment of mental disorders. New York: Guilford Press; 1993.

    Google Scholar 

  67. Kernberg OF. Psychodynamic psychotherapy of borderline patients. New York: Basic Books; 1989.

    Google Scholar 

  68. Yeomans FE, Clarkin JF, Kernberg OF. A primer on transference-focused psychotherapy for the borderline patient. J. Aronson: Northvale, N.J; 2002.

    Google Scholar 

  69. •• Muller LE, Schulz A, Andermann M, Gabel A, Gescher DM, Spohn A, et al. Cortical representation of afferent bodily signals in borderline personality disorder: neural correlates and relationship to emotional dysregulation. JAMA Psychiatry. 2015;72(11):1077–86. doi:10.1001/jamapsychiatry.2015.1252. The researchers examined the neural signal (in EEG) that reports on individuals’ heartbeats. Consistent with altered sense of physical self in BPD, they found decreased amplitude in BPD and an intermediate phenotype (between BPD and control) for people who have recovered from BPD. This suggests that brain signals may normalize as symptoms decrease.

    Article  PubMed  Google Scholar 

  70. Tsakiris M. My body in the brain: a neurocognitive model of body-ownership. Neuropsychologia. 2010;48(3):703–12. doi:10.1016/j.neuropsychologia.2009.09.034.

    Article  PubMed  Google Scholar 

  71. Thakkar KN, Nichols HS, McIntosh LG, Park S. Disturbances in body ownership in schizophrenia: evidence from the rubber hand illusion and case study of a spontaneous out-of-body experience. PLoS One. 2011;6(10):e27089. doi:10.1371/journal.pone.0027089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Morgan HL, Turner DC, Corlett PR, Absalom AR, Adapa R, Arana FS, et al. Exploring the impact of ketamine on the experience of illusory body ownership. Biol Psychiatry. 2011;69(1):35–41. doi:10.1016/j.biopsych.2010.07.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Michael J, Park S. Anomalous bodily experiences and perceived social isolation in schizophrenia: an extension of the social deafferentation hypothesis. Schizophr Res. 2016;176(2–3):392–7. doi:10.1016/j.schres.2016.06.013.

    Article  PubMed  Google Scholar 

  74. Palmer CJ, Seth AK, Hohwy J. The felt presence of other minds: predictive processing, counterfactual predictions, and mentalising in autism. Conscious Cogn. 2015;36:376–89. doi:10.1016/j.concog.2015.04.007.

    Article  PubMed  Google Scholar 

  75. • Seth AK. Interoceptive inference, emotion, and the embodied self. Trends Cogn Sci. 2013;17(11):565–73. doi:10.1016/j.tics.2013.09.007. This commentary is a well-written and thoughtful discussion of the neural basis of embodied cognition, a field particularly relevant to BPD given the prominent somatic symptoms and (related) disruptions to sense of self.

    Article  PubMed  Google Scholar 

  76. Seth AK, Suzuki K, Critchley HD. An interoceptive predictive coding model of conscious presence. Front Psychol. 2011;2:395. doi:10.3389/fpsyg.2011.00395.

    PubMed  Google Scholar 

  77. Ehrsson HH, Spence C, Passingham RE. That’s my hand! Activity in premotor cortex reflects feeling of ownership of a limb. Science. 2004;305(5685):875–7. doi:10.1126/science.1097011.

    Article  CAS  PubMed  Google Scholar 

  78. Wada M, Takano K, Ora H, Ide M, Kansaku K. The rubber tail illusion as evidence of body ownership in mice. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2016;36(43):11133–7. doi:10.1523/JNEUROSCI.3006-15.2016.

    Article  CAS  Google Scholar 

  79. Hoffman RE. A social deafferentation hypothesis for induction of active schizophrenia. Schizophrenia Bulletin. 2007;(33)5:1066–70. doi: 10.1093/schbull/sbm079.

  80. Powers AR, Kelley M.S, Corlett P.R. 2016. Varieties of Voice-Hearing: Psychics and the Psychosis Continuum. Schizophrenia bulletin

  81. McCarthy-Jones S, Green MJ, Scott RJ, Tooney PA, Cairns MJ, Wu JQ, et al. Preliminary evidence of an interaction between the FOXP2 gene and childhood emotional abuse predicting likelihood of auditory verbal hallucinations in schizophrenia. J Psychiatr Res. 2014;50:66–72. doi:10.1016/j.jpsychires.2013.11.012.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah K Fineberg.

Ethics declarations

Conflict of Interest

Dr. Sarah Fineberg reports a NARSAD Young Investigator Grant from the Brain and Behavior Research Foundation and support from the Connecticut Mental Health Center. Dr. Philip Corlett reports grants from IMHRO/Janssen Rising Star Translational Research Award, NIMH (R01MH067073), CTSA (UL1 TR000142) from the National Center for Research Resources (NCRR) and the National Center for Advancing Translational Science (NCATS), components of the National Institutes of Health (NIH), and NIH roadmap for Medical Research, during the conduct of the study. Dylan Stahl was supported by the Richter Memorial Fund and the NSF COAST Award. The contents of this work are solely the responsibility of the authors and do not necessarily represent the official view of NIH or the CMHC/DMHAS.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fineberg, S.K., Stahl, D.S. & Corlett, P.R. Computational Psychiatry in Borderline Personality Disorder. Curr Behav Neurosci Rep 4, 31–40 (2017). https://doi.org/10.1007/s40473-017-0104-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40473-017-0104-y

Keywords

Navigation