Skip to main content
Log in

Contemporary Issues in Exposure Assessment Using Biomonitoring

  • Environmental Epidemiology (J Braun, Section Editor)
  • Published:
Current Epidemiology Reports Aims and scope Submit manuscript

Abstract

In environmental epidemiology, use of biomonitoring (i.e., trace-level measurement of environmental chemicals or their metabolites in biospecimens) for exposure assessment has increased considerably in past decades. Although exposure biomarkers should reflect a person’s exposure to the target chemicals (or their precursors) within a specific timeframe, timing, duration, and intensity of exposures are normally unknown and likely vary within the study period. Therefore, evaluating exposure beyond a single time point may require collecting more than one biospecimen. Of note, collection and sample processing procedures will impact integrity and usefulness of biospecimens. All of the above factors are fundamental to properly interpret biomonitoring data. We will discuss the relevance of the exposure assessment study protocol design to (a) ensure that biomonitoring specimens reflect the intended exposure, (b) consider the temporal variability of concentrations of the target biomarkers, and (c) facilitate the evaluation of accuracy and comparability of biomonitoring results among studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Sexton K, Needham LL, Pirkle JL. Human biomonitoring of environmental chemicals. Am Sci. 2004;92:38–45.

    Article  Google Scholar 

  2. Needham LL, Calafat AM, Barr DB. Uses and issues of biomonitoring. Int J Hyg Environ Health. 2007;210:229–38.

    Article  CAS  PubMed  Google Scholar 

  3. Albertini R, Bird M, Doerrer N, Needham L, Robison S, Sheldon L, et al. The use of biomonitoring data in exposure and human health risk assessments. Environ Health Perspect. 2006;114:1755–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. ATSDR. Toxicological profile for mercury. Atlanta, GA: Agency for Toxic Substances and Disease Registry. 1999. Available: http://www.atsdr.cdc.gov/toxprofiles/tp46.pdf [accessed 16 Feb 2016].

  5. Arnold SM, Angerer J, Boogaard PJ, Hughes MF, O’Lone RB, Robison SH, et al. The use of biomonitoring data in exposure and human health risk assessment: benzene case study. Crit Rev Toxicol. 2013;43:119–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wolff MS and Swan SH. Phthalate biomarkers in pediatric research. Pediatrics. 2010. Available:http://pediatrics.aappublications.org/content/125/1/e122.comments [accessed 19 February 2016].

  7. Ashley DL, Bonin MA, Cardinali FL, McCraw JM, Holler JS, Needham LL, et al. Determining volatile organic compounds in human blood from a large sample population by using purge and trap gas chromatography/mass spectrometry. Anal Chem. 1992;64:1021–9.

    Article  CAS  PubMed  Google Scholar 

  8. Calafat AM, Needham LL. What additional factors beyond state-of-the-art analytical methods are needed for optimal generation and interpretation of biomonitoring data? Environ Health Perspect. 2009;117:1481–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McKee RH. Phthalate exposure and early thelarche. Environ Health Perspect. 2004;112:A541–3.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Engel SM, Wolff MS. Causal inference considerations for endocrine disruptor research in children’s health. Annu Rev Public Health. 2013;34:139–58. Review describing factors (e.g., study design, confounding, exposure measurement) that may affect the interpretation of human health effects biomonitoring research.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Calafat AM, Longnecker MP, Koch HM, Swan SH, Hauser R, Goldman LR, et al. Optimal exposure biomarkers for nonpersistent chemicals in environmental epidemiology. Environ Health Perspect. 2015;123:A166–8.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Makey CM, McClean MD, Sjodin A, Weinberg J, Carignan CC, Webster TF. Temporal variability of polybrominated diphenyl ether (PBDE) serum concentrations over one year. Environ Sci Technol. 2014;48:14642–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Verner MA, Gaspar FW, Chevrier J, Gunier RB, Sjodin A, Bradman A, et al. Increasing sample size in prospective birth cohorts: back-extrapolating prenatal levels of persistent organic pollutants in newly enrolled children. Environ Sci Technol. 2015;49:3940–8. Report describing one approach to back-extrapolate prenatal maternal concentrations of select persistent organic pollutants from maternal concentrations taken years after pregnancy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Needham LL, Barr DB, Calafat AM. Characterizing children’s exposures: beyond NHANES. Neurotoxicology. 2005;26:547–53.

    Article  PubMed  Google Scholar 

  15. Aylward LL, Hays SM, Smolders R, Koch HM, Cocker J, Jones K, et al. Sources of variability in biomarker concentrations. J Toxicol Environ Health B Crit Rev. 2014;17:45–61. Review describing factors (e.g., nature of the target chemical of interest, characteristics of the likely route(s) and frequency of exposure, physiological characteristics of the biomonitoring matrix (typically, blood or urine)) that influence variation in biomarker concentrations.

    Article  CAS  PubMed  Google Scholar 

  16. Koch HM, Aylward LL, Hays SM, Smolders R, Moos RK, Cocker J, et al. Inter- and intra-individual variation in urinary biomarker concentrations over a 6-day sampling period. Part 2: personal care product ingredients. Toxicol Letters. 2014;231:261–9. Report describing short term (ca. one week) variability in adults’ biomarker concentrations of chemicals used in personal care products.

    Article  CAS  Google Scholar 

  17. Preau JL, Wong LY, Silva MJ, Needham LL, Calafat AM. Variability over 1 week in the urinary concentrations of metabolites of diethyl phthalate and di(2-ethylhexyl) phthalate among eight adults: an observational study. Environ Health Perspect. 2010;118:1748–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Teeguarden JG, Calafat AM, Ye XY, Doerge DR, Churchwell MI, Gunawan R, et al. Twenty-four hour human urine and serum profiles of bisphenol A during high-dietary exposure. Toxicol Sci. 2011;123:48–57.

    Article  CAS  PubMed  Google Scholar 

  19. Ye XY, Wong LY, Bishop AM, Calafat AM. Variability of urinary concentrations of bisphenol A in spot samples, first morning voids, and 24-hour collections. Environ Health Perspect. 2011;119:983–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Frederiksen H, Kranich SK, Jorgensen N, Taboureau O, Petersen JH, Andersson AM. Temporal variability in urinary phthalate metabolite excretion based on spot, morning, and 24-h urine samples: considerations for epidemiological studies. Environ Sci Technol. 2013;47:958–67. Report describing variability within three months in adults’ biomarker concentrations.

    Article  CAS  PubMed  Google Scholar 

  21. Li Z, Romanoff LC, Lewin MD, Porter EN, Trinidad DA, Needham LL, et al. Variability of urinary concentrations of polycyclic aromatic hydrocarbon metabolite in general population and comparison of spot, first-morning, and 24-h void sampling. J Expo Sci Environ Epidemiol. 2010;20:526–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bradman A, Kogut K, Eisen EA, Jewell NP, Quiros-Alcala L, Castorina R, et al. Variability of organophosphorous pesticide metabolite levels in spot and 24-hr urine samples collected from young children during 1 week. Environ Health Perspect. 2013;121:118–24.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wielgomas B. Variability of urinary excretion of pyrethroid metabolites in seven persons over seven consecutive days-Implications for observational studies. Toxicol Lett. 2013;221:15–22.

    Article  CAS  PubMed  Google Scholar 

  24. Fromme H, Bolte G, Koch HM, Angerer J, Boehmer S, Drexler H, et al. Occurrence and daily variation of phthalate metabolites in the urine of an adult population. Int J Hyg Environ Health. 2007;210:21–33.

    Article  CAS  PubMed  Google Scholar 

  25. Lassen TH, Frederiksen H, Jensen TK, Petersen JH, Main KM, Skakkebaek NE, et al. Temporal variability in urinary excretion of bisphenol A and seven other phenols in spot, morning, and 24-h urine samples. Environ Res. 2013;126:164–70.

    Article  CAS  PubMed  Google Scholar 

  26. Adibi JJ, Whyatt RM, Williams PL, Calafat AM, Camann D, Herrick R, et al. Characterization of phthalate exposure among pregnant women assessed by repeat air and urine samples. Environ Health Perspect. 2008;116:467–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bertelsen RJ, Engel SM, Jusko TA, Calafat AM, Hoppin JA, London SJ, et al. Reliability of triclosan measures in repeated urine samples from Norwegian pregnant women. J Expos Sci Environ Epidemiol. 2014;24:517–21.

    Article  CAS  Google Scholar 

  28. Braun JM, Kalkbrenner AE, Calafat AM, Bernert JT, Ye XY, Silva MJ, et al. Variability and predictors of urinary bisphenol A concentrations during pregnancy. Environ Health Perspect. 2011;119:131–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Braun JM, Smith KW, Williams PL, Calafat AM, Berry K, Ehrlich S, et al. Variability of urinary phthalate metabolite and bisphenol A concentrations before and during pregnancy. Environ Health Perspect. 2012;120:739–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cantonwine DE, Cordero JF, Rivera-Gonzalez LO, Del Toro LVA, Ferguson KK, Mukherjee B, et al. Urinary phthalate metabolite concentrations among pregnant women in Northern Puerto Rico: distribution, temporal variability, and predictors. Environ Int. 2014;62:1–11. Report describing variability during pregnancy of biomarker concentrations.

    Article  CAS  PubMed  Google Scholar 

  31. Engel LS, Buckley JP, Yang G, Liao LM, Satagopan J, Calafat AM, et al. Predictors and variability of repeat measurements of urinary phenols and parabens in a cohort of Shanghai women and men. Environ Health Perspect. 2014;122:733–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hauser R, Meeker JD, Park S, Silva MJ, Calafat AM. Temporal variability of urinary phthalate metabolite levels in men of reproductive age. Environ Health Perspect. 2004;112:1734–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Irvin EA, Calafat AM, Silva MJ, Aguilar-Villalobos M, Needham LL, Hall DB, et al. An estimate of phthalate exposure among pregnant women living in Trujillo. Peru Chemosphere. 2010;80:1301–7.

    Article  CAS  PubMed  Google Scholar 

  34. Lewis RC, Cantonwine DE, Anzalota Del Toro LV, Calafat AM, Valentin-Blasini L, Davis MD, et al. Urinary biomarkers of exposure to insecticides, herbicides, and one insect repellent among pregnant women in Puerto Rico. Environ Health. 2014;13:97.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lewis RC, Cantonwine DE, Anzalota Del Toro LV, Calafat AM, Valentin-Blasini L, Davis MD, et al. Distribution and determinants of urinary biomarkers of exposure to organophosphate insecticides in Puerto Rican pregnant women. Sci Total Environ. 2015;15:337–44.

    Article  Google Scholar 

  36. Mahalingaiah S, Meeker JD, Pearson KR, Calafat AM, Ye X, Petrozza J, et al. Temporal variability and predictors of urinary bisphenol A concentrations in men and women. Environ Health Perspect. 2008;116:173–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Meeker JD, Calafat AM, Hauser R. Urinary phthalate metabolites and their biotransformation products: predictors and temporal variability among men and women. J Expos Sci Environ Epidemiol. 2012;22:376–85.

    Article  CAS  Google Scholar 

  38. Peck JD, Sweeney AM, Symanski E, Gardiner J, Silva MJ, Calafat AM, et al. Intra- and inter-individual variability of urinary phthalate metabolite concentrations in Hmong women of reproductive age. J Expos Sci Environ Epidemiol. 2010;20:90–100.

    Article  CAS  Google Scholar 

  39. Philippat C, Wolff MS, Calafat AM, Ye X, Bausell R, Meadows M, et al. Prenatal exposure to environmental phenols: concentrations in amniotic fluid and variability in urinary concentrations during pregnancy. Environ Health Perspect. 2013;121:1225–31.

    PubMed  PubMed Central  Google Scholar 

  40. Quiros-Alcala L, Eskenazi B, Bradman A, Ye X, Calafat AM, Harley K. Determinants of urinary bisphenol A concentrations in Mexican/Mexican-American pregnant women. Environ Int. 2013;59:152–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Smith KW, Braun JM, Williams P, Ehrlich S, Correia KF, Calafat AM, et al. Predictors and variability of urinary paraben concentrations in men and women, including before and during pregnancy. Environ Health Perspect. 2012;120:1538–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Teitelbaum SL, Britton JA, Calafat AM, Ye X, Silva MJ, Reidy JA, et al. Temporal variability in urinary concentrations of phthalate metabolites, phytoestrogens and phenols among minority children in the United States. Environ Res. 2008;106:257–69.

    Article  CAS  PubMed  Google Scholar 

  43. Watkins DJ, Eliot M, Sathyanarayana S, Calafat AM, Yolton K, Lanphear BP, et al. Variability and predictors of urinary concentrations of Phthalate Metabolites during early childhood. Environ Sci Technol. 2014;48:8881–90. Report describing variability in children of select biomarker concentrations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Baird DD, Saldana TM, Nepomnaschy PA, Hoppin JA, Longnecker MP, Weinberg CR, et al. Within-person variability in urinary phthalate metabolite concentrations: measurements from specimens after long-term frozen storage. J Exp Sci Envirom Epidemiol. 2010;20:169–75.

    Article  CAS  Google Scholar 

  45. Valvi D, Monfort N, Ventura R, Casas M, Casas L, Sunyer J, et al. Variability and predictors of urinary phthalate metabolites in Spanish pregnant women. Int J Hyg Environ Health. 2015;218:220–31.

    Article  CAS  PubMed  Google Scholar 

  46. Ferguson KK, McElrath TF, Ko YA, Mukherjee B, Meeker JD. Variability in urinary phthalate metabolite levels across pregnancy and sensitive windows of exposure for the risk of preterm birth. Environ Int. 2014;70:118–24.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Townsend MK, Franke AA, Li XN, Hu FB, Eliassen AH. Within-person reproducibility of urinary bisphenol A and phthalate metabolites over a 1 to 3 year period among women in the Nurses’ Health Studies: a prospective cohort study. Environ Health. 2013;12:80.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Jusko TA, Shaw PA, Snijder CA, Pierik FH, Koch HM, Hauser R, et al. Reproducibility of urinary bisphenol A concentrations measured during pregnancy in the generation R study. J Expos Sci Environ Epidemiol. 2014;24:532–6.

    Article  CAS  Google Scholar 

  49. Nepomnaschy PA, Baird DD, Weinberg CR, Hoppin JA, Longnecker MP, Wilcox AJ. Within-person variability in urinary bisphenol A concentrations: measurements from specimens after long-term frozen storage. Environ Res. 2009;109:734–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Meeker JD, Barr DB, Ryan L, Herrick RF, Bennett DH, Bravo R, et al. Temporal variability of urinary levels of nonpersistent insecticides in adult men. J Expos Anal Environ Epidemiol. 2005;15:271–81.

    Article  CAS  Google Scholar 

  51. Weiss L, Arbuckle TE, Fisher M, Ramsay T, Mallick R, Hauser R, et al. Temporal variability and sources of triclosan exposure in pregnancy. Int J Hyg Environ Health. 2015;218:507–13.

    Article  CAS  PubMed  Google Scholar 

  52. Morgan M, Jones P, Sobus J. Short-term variability and predictors of urinary pentachlorophenol levels in Ohio preschool children. Int J Environ Res Public Health. 2015;12:800–15.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Geens T, Dirtu AC, Dirinck E, Malarvannan G, Van Gaal L, Jorens PG, et al. Daily intake of bisphenol A and triclosan and their association with anthropometric data, thyroid hormones and weight loss in overweight and obese individuals. Environ Int. 2015;76:98–105.

    Article  CAS  PubMed  Google Scholar 

  54. Spaan S, Pronk A, Koch HM, Jusko TA, Jaddoe VW, Shaw PA, et al. Reliability of concentrations of organophosphate pesticide metabolites in serial urine specimens from pregnancy in the Generation R Study. J Expo Sci Environ Epidemiol. 2015;25:286–94.

    Article  CAS  PubMed  Google Scholar 

  55. Reeves KW, Luo J, Hankinson SE, Hendryx M, Margolis KL, Manson JE, et al. Within-person variability of urinary bisphenol-A in postmenopausal women. Environ Res. 2014;135:285–8.

    Article  CAS  PubMed  Google Scholar 

  56. Fisher M, Arbuckle TE, Mallick R, LeBlanc A, Hauser R, Feeley M, et al. Bisphenol A and phthalate metabolite urinary concentrations: daily and across pregnancy variability. J Exp Sci Envirom Epidemiol. 2015;25:231–9.

    Article  CAS  Google Scholar 

  57. Guidry VT, Longnecker MP, Aase H, Eggesbo M, Zeiner P, Reichborn-Kjennerud T, et al. Measurement of total and free urinary phenol and paraben concentrations over the course of pregnancy: assessing reliability and contamination of specimens in the Norwegian mother and child cohort study. Environ Health Perspect. 2015;123:705–11.

    PubMed  PubMed Central  Google Scholar 

  58. Meeker JD, Cantonwine DE, Rivera-Gonzalez LO, Ferguson KK, Mukherjee B, Calafat AM, et al. Distribution, variability, and predictors of urinary concentrations of phenols and parabens among pregnant women in Puerto Rico. Environ Sci Technol. 2013;47:3439–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Carwile JL, Luu HT, Bassett LS, Driscoll DA, Yuan C, Chang JY, et al. Polycarbonate bottle use and urinary bisphenol A concentrations. Environ Health Perspect. 2009;117:1368–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Carwile JL, Ye XY, Zhou XL, Calafat AM, Michels KB. Canned soup consumption and urinary bisphenol A: a randomized crossover trial. JAMA. 2011;306:2218–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ehrlich S, Calafat AM, Humblet O, Smith T, Hauser R. Handling of thermal receipts as a source of exposure to bisphenol A. JAMA. 2014;311:859–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Thayer KA, Taylor KW, Garantziotis S, Schurman S, Kissling GE, Hunt D, et al. Bisphenol A, bisphenol S, and 4-hydroxyphenyl 4-isoprooxyphenylsulfone (BPSIP) in urine and blood of cashiers. Environ Health Perspect. 2015. doi:10.1289/ehp.1409427.

  63. Just AC, Adibi JJ, Rundle AG, Calafat AM, Camann D, Hauser R, et al. Urinary and air phthalate concentrations and self-reported use of personal care products among minority pregnant women in New York City. J Exp Sci Envirom Epidemiol. 2010;20:625–33.

    Article  CAS  Google Scholar 

  64. Parlett LE, Calafat AM, Swan SH. Women’s exposure to phthalates in relation to use of personal care products. J Exp Sci Envirom Epidemiol. 2013;23:197–206.

    Article  CAS  Google Scholar 

  65. Berman T, Hochner-Celnikier D, Calafat AM, Needham LL, Amitai Y, Wormser U, et al. Phthalate exposure among pregnant women in Jerusalem, Israel: results of a pilot study. Environ Int. 2009;35:353–7.

    Article  CAS  PubMed  Google Scholar 

  66. Koch HM, Lorber M, Christensen KLY, Palmke C, Koslitz S, Bruning T. Identifying sources of phthalate exposure with human biomonitoring: results of a 48 h fasting study with urine collection and personal activity patterns. Int J Hyg Environ Health. 2013;216:672–81.

    Article  CAS  PubMed  Google Scholar 

  67. Duty SM, Ackerman RM, Calafat AM, Hauser R. Personal care product use predicts urinary concentrations of some phthalate monoesters. Environ Health Perspect. 2005;113:1530–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sathyanarayana S, Karr CJ, Lozano P, Brown E, Calafat AM, Liu F, et al. Baby care products: possible sources of infant phthalate exposure. Pediatrics. 2008;121:E260–8.

    Article  PubMed  Google Scholar 

  69. Dewalque L, Pirard C, Charlier C. Measurement of urinary biomarkers of parabens, benzophenone-3, and phthalates in a Belgian population. Biomed Res Int. 2014. doi:10.1155/2014/649314.

  70. Ye XY, Zhou XL, Hennings R, Kramer J, Calafat AM. Potential external contamination with bisphenol A and other ubiquitous organic environmental chemicals during biomonitoring analysis: an elusive laboratory challenge. Environ Health Perspect. 2013;121:283–6. Report describing measures to potentially identify external contamination sources when analyzing human specimens for ubiquitous organic environmental chemicals.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Huygh J, Clotman K, Malarvannan G, Covaci A, Schepens T, Verbrugghe W, et al. Considerable exposure to the endocrine disrupting chemicals phthalates and bisphenol-A in intensive care unit (ICU) patients. Environ Int. 2015;81:64–72.

    Article  CAS  PubMed  Google Scholar 

  72. Su PH, Chang YZ, Chang HP, Wang SL, Haung HI, Huang PC, et al. Exposure to di(2-ethylhexyl) phthalate in premature neonates in a neonatal intensive care unit in Taiwan. Pediatr Crit Care Med. 2012;13:671–7.

    Article  PubMed  Google Scholar 

  73. Weuve J, Sanchez BN, Calafat AM, Schettler T, Green RA, HU H, et al. Exposure to phthalates in neonatal intensive care unit infants: urinary concentrations of monoesters and oxidative metabolites. Environ Health Perspect. 2006;114:1424–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Calafat AM, Needham LL, Silva MJ, Lambert G. Exposure to di-(2-ethylhexyl) phthalate among premature neonates in a neonatal intensive care unit. Pediatrics. 2004;113:e429–34.

    Article  PubMed  Google Scholar 

  75. Duty SM, Mendonca K, Hauser R, Calafat AM, Ye XY, Meeker JD, et al. Potential sources of bisphenol A in the neonatal intensive care unit. Pediatrics. 2013;131:483–9.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Calafat AM, Weuve J, Ye XY, Jia LT, Hu H, Ringer S, et al. Exposure to bisphenol A and other phenols in neonatal intensive care unit premature infants. Environ Health Perspect. 2009;117:639–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Vandentorren S, Zeman F, Morin L, Sarter H, Bidondo ML, Oleko A, et al. Bisphenol-A and phthalates contamination of urine samples by catheters in the Elfe pilot study: implications for large-scale biomonitoring studies. Environ Res. 2011;111:761–4.

    Article  CAS  PubMed  Google Scholar 

  78. Yan X, Calafat A, Lashley S, Smulian J, Ananth C, Barr D, et al. Phthalates biomarker identification and exposure estimates in a population of pregnant women. Hum Ecol Risk Assess. 2009;15:565–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Koch HM, Kolossa-Gehring M, Schroter-Kermani C, Angerer J, Bruning T. Bisphenol A in 24 h urine and plasma samples of the German environmental specimen bank from 1995 to 2009: a retrospective exposure evaluation. J Expos Sci Environ Epidemiol. 2012;22:610–6.

    Article  CAS  Google Scholar 

  80. Volkel W, Colnot T, Csanady GA, Filser JG, Dekant W. Metabolism and kinetics of bisphenol A in humans at low doses following oral administration. Chem Res Toxicol. 2002;15:1281–7.

    Article  PubMed  Google Scholar 

  81. Waechter J, Domoradzki J, Thornton C, Markham D. Factors affecting the accuracy of bisphenol A and bisphenol A-monoglucuronide estimates in mammalian tissues and urine samples. Toxicol Mech Method. 2007;17:13–24.

    Article  CAS  Google Scholar 

  82. WHO. Toxicological and health aspects of bisphenol A. Report of Joint FAO/WHO Expert Meeting 2–5 November 2010 and Report of Stakeholder Meeting on Bisphenol A 1 November 2010. 2011. Available: http://whqlibdoc.who.int/publications/2011/97892141564274_eng.pdf [accessed 18 Feb 2016].

  83. Longnecker MP, Harbak K, Kissling GE, Hoppin JA, Eggesbo M, Jusko TA, et al. The concentration of bisphenol A in urine is affected by specimen collection, a preservative, and handling. Environ Res. 2013;126:211–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Taylor JK. Quality assurance of chemical measurements. Chelsea: MI: Lewis Publishers; 1987.

    Google Scholar 

  85. Caudill SP, Schleicher RL, Pirkle JL. Multi-rule quality control for the age-related eye disease study. Statist Med. 2008;27:4094–106.

    Article  Google Scholar 

  86. Hogberg J, Hanberg A, Berglund M, Skerfving S, Remberger M, Calafat AM, et al. Phthalate diesters and their metabolites in human breast milk, blood or serum, and urine as biomarkers of exposure in vulnerable populations. Environ Health Perspect. 2008;116:334–9.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Hines CJ, Hopf NBN, Deddens JA, Calafat AM, Silva MJ, Grote AA, et al. Urinary phthalate metabolite concentrations among workers in selected industries: a pilot biomonitoring study. Ann Occup Hyg. 2009;53:1–17.

    Article  CAS  PubMed  Google Scholar 

  88. Morgan MK, Jones PA, Calafat AM, Ye XY, Croghan CW, Chuang JC, et al. Assessing the quantitative relationships between preschool children’s exposures to bisphenol A by route and urinary biomonitoring. Environ Sci Technol. 2011;45:5309–16.

    Article  CAS  PubMed  Google Scholar 

  89. Wolff MS, Teitelbaum SL, Pinney SM, Windham G, Liao L, Biro F, et al. Investigation of relationships between urinary biomarkers of phytoestrogens, phthalates, and phenols and pubertal stages in girls. Environ Health Perspect. 2010;118:1039–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. NIOSH. NIOSH manual of analytical methods, 4th ed. 1994. Available: http://www.cdc.gov/niosh/nmam/chaps.html [accessed 16 Feb 2016].

  91. Becker K, Goen T, Seiwert M, Conrad A, Pick-Fuss H, Muller J, et al. GerES IV: phthalate metabolites and bisphenol A in urine of German children. Int J Hyg Environ Health. 2009;212:685–92.

    Article  CAS  PubMed  Google Scholar 

  92. Koch HM, Becker K, Wittassek M, Seiwert M, Angerer J, Kolossa-Gehring M. Di-n-butylphthalate and butylbenzylphthalate—urinary metabolite levels and estimated daily intakes: pilot study for the German environmental survey on children. J Exp Sci Envirom Epidemiol. 2007;17:378–87.

    Article  CAS  Google Scholar 

  93. Schulz C, Conrad A, Becker K, Kolossa-Gehring M, Seiwert M, Seifert B. Twenty years of the German environmental survey (GerES): human biomonitoring—temporal and spatial (west Germany/east Germany) differences in population exposure. Int J Hyg Environ Health. 2007;210:271–97.

    Article  CAS  PubMed  Google Scholar 

  94. Haines DA, Murray J. Human biomonitoring of environmental chemicals—early results of the 2007–2009 Canadian Health Measures Survey for males and females. Int J Hyg Environ Health. 2012;215:133–7.

    Article  CAS  PubMed  Google Scholar 

  95. CDC. Fourth National Report on Human Exposure to Environmental Chemicals. Updated Tables, February 2015.Atlanta, GA: Centers for Disease Control and Prevention; National Center for Environmental Health; Division of Laboratory Sciences. 2015. Available: http://www.cdc.gov/biomonitoring/pdf/FourthReport_UpdatedTables_Feb2015.pdf [accessed 20 Apr 2015]. Most comprehensive report of US-nationally representative biomonitoring data for more than 200 environmental chemicals.

  96. Jeong SW, Lee CK, Suh CH, Kim KH, Son BC, Kim JH, et al. Blood lead concentration and related factors in Korea from the 2008 National Survey for Environmental Pollutants in the Human Body. Int J Hyg Environ Health. 2014;217:871–7.

    Article  CAS  PubMed  Google Scholar 

  97. Geens T, Bruckers L, Covaci A, Schoeters G, Fierens T, Sioen I, et al. Determinants of bisphenol A and phthalate metabolites in urine of Flemish adolescents. Environ Res. 2014;134:110–7.

    Article  CAS  PubMed  Google Scholar 

  98. Saoudi A, Frery N, Zeghnoun A, Bidondo ML, Deschamps V, Goen T, et al. Serum levels of organochlorine pesticides in the French adult population: the French National Nutrition and Health Study (ENNS), 2006–2007. Sci Total Environ. 2014;472:1089–99.

    Article  CAS  PubMed  Google Scholar 

  99. Puklova V, Krskova A, Cerna M, Cejchanova M, Rehurkova I, Ruprich J, et al. The mercury burden of the Czech population: an integrated approach. Int J Hyg Environ Health. 2010;213:243–51.

    Article  CAS  PubMed  Google Scholar 

  100. Bartolome M, Ramos JJ, Cutanda F, Huetos O, Esteban M, Ruiz-Moraga M, et al. Urinary polycyclic aromatic hydrocarbon metabolites levels in a representative sample of the Spanish adult population: the BIOAMBIENT.ES project. Chemosphere. 2015;135:436–46.

    Article  CAS  PubMed  Google Scholar 

  101. Levine H, Berman T, Goldsmith R, Goen T, Spungen J, Novack L, et al. Urinary concentrations of polycyclic aromatic hydrocarbons in Israeli adults: demographic and life-style predictors. Int J Hyg Environ Health. 2015;218:123–31.

    Article  CAS  PubMed  Google Scholar 

  102. Lakind JS, Levesque J, Dumas P, Bryan S, Clarke J, Naiman DQ. Comparing United States and Canadian population exposures from national biomonitoring surveys: bisphenol A intake as a case study. J Expos Sci Environ Epidemiol. 2012;22:219–26.

    Article  CAS  Google Scholar 

  103. May W, Parris R, Beck C, Fassett J, Greenberg R, Guenther F, Kramer G, Wise S, Gills T, Colbert J, Gettings R, and MacDonald B. NIST special publication 260–136 Gaithersburg, MD:U.S. Government Printing Office. 2000. Available: http://www.nist.gov/srm/upload/SP260-136.PDF [accessed 30 Nov 2015].

  104. WHO. Laboratory quality management system: handbook. Chapter 10: assessment—external quality assessment. 2011. Available: http://apps.who.int/iris/bitstream/10665/44665/1/9789241548274_eng.pdf [accessed 30 Nov 2015].

  105. Keller JM, Calafat AM, Kato K, Ellefson ME, Reagen WK, Strynar MJ, et al. Determination of perfluorinated alkyl acid concentrations in human serum and milk standard reference materials. Anal Bioanal Chem. 2010;397:439–51.

    Article  CAS  PubMed  Google Scholar 

  106. Schantz MM, Benner Jr BA, Heckert NA, Sander LC, Sharpless KE, Vander Pol SS, et al. Development of urine standard reference materials for metabolites of organic chemicals including polycyclic aromatic hydrocarbons, phthalates, phenols, parabens, and volatile organic compounds. Anal Bioanal Chem. 2015;407:2945–54. Report describing the characterization of the first NIST urine Certified Reference Materials for metabolites of organic environmental contaminants.

    Article  CAS  PubMed  Google Scholar 

  107. Paul RL, Davis WC, Yu L, Murphy KE, Guthrie WF, Leber DD, et al. Certification of total arsenic in blood and urine standard reference materials by radiochemical neutron activation analysis and inductively coupled plasma-mass spectrometry. J Radioanal Nucl Chem. 2014;299:1555–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Schantz MM, Keller JM, Leigh S, Patterson Jr DG, Sharpless KE, Sjodin A, et al. Certification of SRM 1589a PCBs, pesticides, PBDEs, and dioxins/furans in human serum. Anal Bioanal Chem. 2007;389:1201–8.

    Article  CAS  PubMed  Google Scholar 

  109. Langlois E, Saravanabhavan G, Arbuckle TE, Giroux S. Correction and comparability of phthalate metabolite measurements of Canadian biomonitoring studies (2007–2012). Environ Int. 2014;64:129–33.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonia M. Calafat.

Ethics declarations

Conflict of Interest

The author declares that she has no conflicts of interest.

Disclaimer

The findings and conclusions in this report are those of the author and do not necessarily represent the official position of the Centers for Disease Control and Prevention (CDC). Use of trade names is for identification only and does not imply endorsement by the CDC, the Public Health Service, or the US Department of Health and Human Services.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the author.

Additional information

This article is part of the Topical Collection on Environmental Epidemiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calafat, A.M. Contemporary Issues in Exposure Assessment Using Biomonitoring. Curr Epidemiol Rep 3, 145–153 (2016). https://doi.org/10.1007/s40471-016-0075-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40471-016-0075-7

Keywords

Navigation