Skip to main content
Log in

Single point and asymmetric incremental forming

  • Published:
Advances in Manufacturing Aims and scope Submit manuscript

Abstract

This paper presents an update on single point incremental forming (SPIF) of sheet metal since 2005. It includes a description of the process with new information on the maximum forming angle, \(\phi_{ \hbox{max} }\), for 5052-H32. An in-depth example of the successful design and production of parts is given for industry. This includes discussion on production times and surface roughness with details that will help designers. A general design guide for users of SPIF is provided. It is based upon experience gained in the last decade. In general, materials show a trend of decreasing formability with increasing initial thickness. It is shown that for thicker sheet metal, it is recommended using large spherical tools (12.7 mm or larger), or a large flat-ended tool. The flat-ended tool provides the best combination of good formability and very low surface roughness. For aluminum, galvanized steel and stainless steel, it is recommended using a flat-ended tool. Advances in multi-pass techniques and information on successful and useful numerical models which predict forming behaviour are included. Finally, there is a discussion on future work needed in SPIF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

z :

vertical step size between forming passes

ϕ :

wall angle

ϕ max :

maximum wall angle

d :

tool diameter

r :

tool radius

R :

radius of test shape wall angle increase

L :

overall depth of the part

H :

vertical height of the tool centre above the bottom of the test shape

h :

vertical height of the point of contact between the tool and test surface

\(\delta_{\phi }^{ \pm }\) :

error bounds in wall angle

\(t_{\text{i}}\) :

initial sheet thickness

\(t_{\text{f}}\) :

final sheet thickness

References

  1. Leszak, E. Patent US3342051A1, 1967-09-19. Apparatus and process for incremental dieless forming

  2. Kitazawa K, Wakabayashi A, Murata K, Yaejima K (1996) Metal flow phenomena in computerized numerically controlled incremental stretch-expanding of aluminum sheets. J Jpn Inst Light Metals 46:65–70

    Article  Google Scholar 

  3. Jeswiet J (2000) Rapid proto-typing with incremental single point forming. J CAD/CAM Comput Graph 15(2-3-4):177–183, Dec. 2000; special edition on rapid production development

  4. Jeswiet V (2001) Incremental single point forming. Trans N Am Manuf Res Inst XXIX:75–79

    Google Scholar 

  5. Jeswiet J, Micari F, Hirt G, Bramley A, Duflou J, Allwood J (2005) Asymmetric single point incremental forming of sheet metal. Ann CIRP 54(2):623–650

    Article  Google Scholar 

  6. Young D, Jeswiet J (2004) Wall thickness variations in single point incremental forming. IMECHE Part B 218(B11):1453–1459

    Article  Google Scholar 

  7. Meier H, Buff B, Laurischkat R, Smukala V (2009) Increasing the part accuracy in dieless robot-based incremental sheet metal forming. CIRP Ann Manuf Technol 58:233–238

    Article  Google Scholar 

  8. Duflou JR, Callebaut B, Verbert J, De Baerdemaeker H (2007) Laser assisted incremental forming: formability and accuracy improvement. Ann CIRP 56(1):273–276

    Article  Google Scholar 

  9. Kegg RL (1961) A new test method for determination of spinnability of metals. Trans ASME, J Eng Ind 83:119–124

    Article  Google Scholar 

  10. Kalpakcioglu S (1961) On the mechanics of shear spinning. Trans ASME Ser B 83:125–130

    Article  Google Scholar 

  11. Bambach M (2010) A geometrical model of the kinematics of incremental sheet forming for the prediction of membrane strains and sheet thickness. J Mater Process Technol 210(12):1562–1573

    Article  Google Scholar 

  12. Ham M, Jeswiet J (2006) Single point incremental forming and the forming criteria for AA3003. Ann CIRP 55(1):241–244

    Article  Google Scholar 

  13. Hussain G, Gao L (2007) A novel method to test the thinning limits of sheet metals in negative incremental forming. Int J Mach Tools Manuf 47:419–435

    Article  Google Scholar 

  14. Cawley B, Adams D, Jeswiet J (2012) Examining tool shapes in single point incremental forming. Proc NAMRI/SME 26:201–206

    Google Scholar 

  15. Adams D, Jeswiet, J (2015) Tool shapes in single point incremental forming: an experimental study. IMECHE J Eng Manuf (in press)

  16. Carrino L, Giuliano G, Strano M (2006) The effect of the punch radius in dieless incremental forming. 2nd I*PROMS virtual international conference on intelligent production machines and systems pp. 204–209

  17. Hamilton K, Jeswiet J (2010) Visual categorization and quantification of the orange peel effect in single point incremental forming. Trans NAMRI/SME 38:679–686

    Google Scholar 

  18. Hamilton K, Jeswiet J (2010) Single point incremental forming at high feed rates and rotational speeds: surface and structural consequences. Ann CIRP 59(1):311–314

    Article  Google Scholar 

  19. Adams D, Jeswiet J (2015) Design rules and applications of single point incremental forming. IMECHE J Eng Manuf 229(5):754–760

  20. Hagan E, Jeswiet J (2003) A review of conventional and modern single point sheet metal forming methods. J Eng Manuf 217(B2):213–225. Awarded the I MECH E Joseph Whitworth Prize for best paper of 2003 in the IMECHE Journal of Engineering Manufacture

  21. Adams D, Jeswiet J (2014) A new model for contact geometry in single point incremental forming. IMECHE J Eng Manuf 39:125–136

    Google Scholar 

  22. Hussain G, Lin G, Hayat N, Iqbal A (2010) On the effect of curvature radius on the spifability. Adv Mater Res 129–131:1222–1227

    Article  Google Scholar 

  23. Martins PAF, Bay N, Skjoedt M, Silva MB (2008) Theory of single point incremental forming. CIRP Ann Manuf Technol 57:247–252

    Article  Google Scholar 

  24. Sena JIV, Alves de Sousa RJ, Valente RAF (2011) On the use of EAS solid-shell formulations in the numerical simulation of incremental forming processes. Eng Comput 28(3):287–313

    Article  MATH  Google Scholar 

  25. Ambrogio G, Filice L, Gagliardi F, Micari F (2005) Three-dimensional FE simulation of single point incremental forming: experimental evidences and process design improving. VIII international conference on computational plasticity COMPLAS VIII

  26. Xu D, Malhotra R, Reddy NV, Chen J, Cao J (2002) Analytical prediction of stepped feature generation in multi-pass single point incremental forming. J Manuf Processes 14:487–494

    Article  Google Scholar 

  27. Malhotra R, Bhattacharya A, Kumar A, Reddy NV, Cao J (2011) A new methodology for multi-pass single point incremental forming with mixed toolpaths. CIRP Ann Manuf Technol 60(1):323–326

    Article  Google Scholar 

  28. Martins PAF, Kwiatkowski L, Franzen V, Tekkaya AE, Kleiner M (2009) Single point incremental forming of polymers. CIRP Ann Manuf Technol 58:229–232

    Article  Google Scholar 

  29. Duflou J, Vanhove H, Verbert J, Gu J, Vasilakos I, Eyckens P (2010) Twist revisited: twist phenomena in single point incremental forming. CIRP Ann Manuf Technol 59(1):307–310

    Article  Google Scholar 

  30. Adams D, Jeswiet J (2014) Single point incremental forming of 6061-T6 using electrically assisted forming methods. IMECHE J Eng Manuf 228(7):757–764

    Article  Google Scholar 

  31. Ambrogio G, Filice L, Manco GL (2008) Warm incremental forming of magnesium alloy AZ31. CIRP Ann Manuf Technol 57:257–260

    Article  Google Scholar 

  32. Hino Ryutaro, Kawabata Keita, Yoshida Fusahito (2014) Incremental forming with local heating by laser irradiation for magnesium alloy sheet. Proc Eng 81:2330–2335

    Article  Google Scholar 

  33. Henrad C, Bouffioux C, Eykens P, Sol H, Duflou JR, van Houte P, van Bael A, Duchene L, Habraken A (2011) Forming forces in single point incremental forming: prediction by finite element simulations, validation and sensitivity. Comput Mech 47:573–590

    Article  Google Scholar 

  34. Ambrogio G, Gagliardi F, Bruschi S, Filice L (2013) On the high-speed single point incremental forming of titanium alloys. CIRP Ann Manuf Technol 62:243–246

    Article  Google Scholar 

  35. Fan G, Sun F, Meng X, Gao L, Tong G (2010) Incremental forming of Ti6Al4 V titanium sheet. Int J Adv Manuf Technol 49:941–947

    Article  Google Scholar 

  36. Duflou J, Tunçkol Y, Szekeres A, Vanherck P (2007) Experimental study on force measurements for single point incremental forming. J Mater Process Technol 189(1–3):65–72

    Article  Google Scholar 

  37. Jeswiet J, Szekeres A (2005) Forces in single point incremental forming. Trans N Am Manuf Res Inst XXXIII:399–404

    Google Scholar 

  38. Jeswiet J, Szekeres A, Ham M (2007) Force measurement with a spindle mounted force sensor. Trans NAMRI/SME 35(2007):255–262

    Google Scholar 

  39. Szekeres A, Ham M, Jeswiet J (2007) Force measurement in pyramid shaped parts with a spindle mounted forcesensor. J Key Eng Mater 344:551–558

    Article  Google Scholar 

  40. Jeswiet J, Duflou JR, Szekeres A (2005) Forces in single point and two point incremental forming. J Adv Mater Res 6–8:449–456

    Article  Google Scholar 

  41. Adams DW, Jeswiet J (2012) Energy consumption in single point incremental forming. Proc NAMRI/NAMRC 40:738–742

    Google Scholar 

  42. Camino L, Di Meo N, Sorrentino L, Strano M. The influence of friction in the negative dieless incremental forming process. The 9th international ESAFORM conference on material forming

  43. Azevedo NG, Farias JS, Bastos RP, Teixeira P, Davim JP, de Sousa RJA (2015) Lubrication aspects during single point incremental forming for steel and aluminum materials. Int J Precis Eng Manuf 16(3):589–595

    Article  Google Scholar 

  44. Shi X, Gao L, Khalatbari H, Xu Y, Wang H, Jin L (2013) Electric hot incremental forming of low carbon steel sheet: accuracy improvement. Int J Adv Manuf Technol 68:241–247

    Article  Google Scholar 

  45. Roth JT, Loker I, Mauck D, Warner M, Golovaschenko SF, Krause AL (2008) Enhanced formability of 5754 Al sheet metal using electric pulsing. Trans NAMRI/SME 36:405–412

    Google Scholar 

  46. Collins TJ, Roth JT (2010) Deep drawing of 5052 aluminium strips using electrically-assisted manufacturing. Trans NAMRI/SME 38:8

    Google Scholar 

  47. Micari F, Ambrogio G, Filice L (2007) Shape and dimensional accuracy in Single Point Incremental Forming: State of the art and future trends. J Mate Process Technol 191(1–3):390–395

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank NSERC and Auto 21 for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Jeswiet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeswiet, J., Adams, D., Doolan, M. et al. Single point and asymmetric incremental forming. Adv. Manuf. 3, 253–262 (2015). https://doi.org/10.1007/s40436-015-0126-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40436-015-0126-1

Keywords

Navigation