Skip to main content

Advertisement

Log in

Dynamics of a rotor-aerostatic journal bearings system with asymmetric air feeding

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

In this study, the effect of the symmetric and asymmetric air feeding on the dynamics of a shaft-aerostatic journal bearing system is theoretically investigated. In this scope, the pressure distribution of the air in the clearance is modeled with Reynold's equation and the lubrication forces are calculated using this distribution. Then, equations of motion derived in four degrees of freedom are solved for different rotational speeds under symmetric and asymmetric air feeding conditions. To validate the simulation results, an experimental test rig comprised of a rotor, air bearings, and measurement equipment is set up and run for different rotational speeds. The nonlinear dynamic behavior of the imbalance responses of the bearing-shaft system is analyzed using bifurcation diagrams, Poincare map, waterfall, and orbit plots. The results of the presented study brought to light that the system has a nonlinear dynamic motion due to a pneumatic hammer. However, the pneumatic hammer frequency of an aerostatic bearing with asymmetric supply pressure condition is lower than an aerostatic bearing with the symmetric condition. And the results also showed that the bearing performance will be improved by asymmetric supply pressure conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Abbreviations

c :

Clearance between journal and shaft surface, μm

c d :

Coefficient of discharge at orifice

d o :

Diameter of orifice, mm

D :

Diameter of journal, mm

e :

Eccentricity

e u :

Unbalanced degree, μm

F :

Air film force, N

g :

Acceleration of gravity, m/s2

h :

Function of the film thickness

H :

Function of the dimensionless film thickness, h/c

I :

Transverse mass moment of inertia, kg m2

I zz :

Polar mass moment of inertia, kg m2

k xy :

Air film stiffness, N/m

k :

Parameter of differential transform method

L :

Journal length, mm

L r :

Shaft length, mm

m :

Shaft mass, kg

\(\dot{m}\) :

Mass flow rate, kg/s

\(\dot{M}\) :

Dimensionless mass flow rate

p :

Pressure, Pa

P :

Dimensionless pressure, p/pa

p a :

Atmospheric pressure

P d :

Dimensionless downward pressure

p s :

Supply pressure

R 0 :

Gas constant, J/kg °K

T 0 :

Reference temperature, °K

t :

Time, s

U :

Linear velocity of the shaft surface, m/s

W :

Air film force, N

x, y, z :

Coordinate axes

ε :

Eccentricity ratio

μ :

Air viscosity, Pa s

κ :

Specific heat ratio

θ :

Circumferential axis in dimensional form, x/R

ξ :

Axial axis in dimensionless form, z/R

τ u :

Unbalanced degree in rotational direction, rad

ω :

Rotational speed, rad/s

\(\phi ,\varphi\) :

Pitch and yaw axis, rad

References

  1. Lee J, Kim K (1999) Effects of synchronous vibration of bearing on stability of externally pressurized air journal bearings ASME. J Tribol 121(4):830–835. https://doi.org/10.1115/1.2834142

    Article  Google Scholar 

  2. Jiang S, Lin S, Xu C (2017) Static and dynamic characteristics of externally pressurized porous gas journal bearing with four degrees-of-freedom ASME. J Tribol 140(1):011702. https://doi.org/10.1115/1.4037134

    Article  Google Scholar 

  3. Su JC, Lie K (2006) Rotor dynamic instability analysis on hybrid air journal bearings. Tribol Int 39(3):238–248. https://doi.org/10.1016/j.triboint.2005.01.037

    Article  Google Scholar 

  4. Yang DW, Chen CH, KangY HRM, Shyr SS (2009) Influence of orifices on stability of rotor-aerostatic bearing system. Tribol Int 42(8):1206–1219. https://doi.org/10.1016/j.triboint.2009.04.002

    Article  Google Scholar 

  5. Chen CH, Tsai TH, Yang DW, Kang Y, Chen JH (2010) The comparison in stability of rotor-aerostatic bearing system compensated by orifices and inherences. Tribol Int 43(8):1360–1373. https://doi.org/10.1016/j.triboint.2010.01.006

    Article  Google Scholar 

  6. Otsu Y, Somaya K, Yoshimoto S (2011) High-speed stability of a rigid rotor supported by aerostatic journal bearings with compound restrictors. Tribol Int 44(1):9–17. https://doi.org/10.1016/j.triboint.2010.09.007

    Article  Google Scholar 

  7. Ise T, Nakatsuka M, Nagao K, Matsubara M, Kawamura S, Asami T, Kinugawa T, Nishimura K (2017) Externally pressurized gas journal bearing with slot restrictors arranged in the axial direction. Precis Eng 50:286–292. https://doi.org/10.1016/j.precisioneng.2017.05.016

    Article  Google Scholar 

  8. Pattnayak MR, Pandey RK, Dutt JK (2020) Performance behaviours of a self-acting gas journal bearing with a new bore design. Tribol Int 151:106418. https://doi.org/10.1016/j.triboint.2020.106418

    Article  Google Scholar 

  9. Pattnayak MR, Pandey RK, Dutt JK (2021) Effects of new micro-pocketed bore surface topographies on the performance behaviours of aerodynamic journal bearing. Surf Topogr Metrol Prop 9(2):025001. https://doi.org/10.1088/2051-672X/abefc1

    Article  Google Scholar 

  10. Stout KJ (1985) The effect of manufacturing variations on the performance of externally pressurized gas-lubricated journal bearings. Proc Inst Mech Eng C J Mech Eng Sci 199(4):299–309. https://doi.org/10.1243/PIME_PROC_1985_199_127_02

    Article  Google Scholar 

  11. Chen YS, Chiu CC, Cheng YD (2010) Influences of operational conditions and geometric parameters on the stiffness of aerostatic journal bearings. Precis Eng 34(4):722–734. https://doi.org/10.1016/j.precisioneng.2010.04.001

    Article  Google Scholar 

  12. Zhang WM, Zhou JB, Meng G (2011) Performance and stability analysis of gas-lubricated journal bearings in MEMS. Tribol Int 44(7):887–897. https://doi.org/10.1016/j.triboint.2011.03.004

    Article  Google Scholar 

  13. Winn LW, Sternlicht B (1962) The load carrying capacity and stability of hybrid gas bearings. General Electric, Aircraft Accessory Turbine Department, Applied Mechanics and Systems Analysis Laboratory, Technical Report No. R62AT8, General Electric, Virginia, USA

  14. Cunningham R, Gunter E, Center LR, Critical speeds of a rotor in rigidly mounted, externally pressurized air-lubricated bearings. Technical Report No. NASA-TN-D-6350, E-6134, USA

  15. Park JK, Kim KW (2004) Stability analyses and experiments of spindle system using new type of slot-restricted gas journal bearings. Tribol Int 37(6):451–462. https://doi.org/10.1016/j.triboint.2003.12.014

    Article  Google Scholar 

  16. Majumdar BC (1976) Whirl instability of externally pressurized gas-lubricated porous journal bearings. Wear 40(2):141–153. https://doi.org/10.1016/0043-1648(76)90094-6

    Article  Google Scholar 

  17. Miyatake M, Yoshimoto S, Sato J (2006) Whirling instability of a rotor supported by aerostatic porous journal bearings with a surface-restricted layer. Proc Inst Mech Eng Part J J Eng Tribol 220(2):95–103. https://doi.org/10.1243/13506501JET89

    Article  Google Scholar 

  18. Feng K, Wang P, Zhang Y, Hou W, Li W, Wang J, Cui H (2021) Novel 3-D printed aerostatic bearings for the improvement of stability: theoretical predictions and experimental measurements. Tribology Int 163:107149. https://doi.org/10.1016/j.triboint.2021.107149

    Article  Google Scholar 

  19. Kuang-Yuh H, Keng-Ning C (2015) Magneto-aerostatic bearing for miniature air turbine. Mech Ind 16(1):105. https://doi.org/10.1051/meca/2014067

    Article  Google Scholar 

  20. Allen DS, Stokes PJ, Whitely S (1961) The performance of externally pressurized bearings using simple orifice restrictors. ASLE Trans 4:181–196. https://doi.org/10.1080/05698196108972430

    Article  Google Scholar 

  21. Chang T, Pan CHT (1969) Refined solution of pneumatic hammer instability of inherently compensated hydrostatic gas thrust bearing, Technical Report No. MTI 69TR23, Mechanical Technology Incorporated, USA

  22. Licht L, Elrod HG (1961) An analytical and experimental study of the stability of externally-pressurized gas-lubricated thrust bearings. Technical Report No. I-A2049-12, The Franklin Institute Laboratories of Research Development, Philadelphia, USA

  23. Boffey DA (1978) A study of an externally-pressurized gas-lubricated thrust bearingwith a flexible damped support. ASME Trans J Lubr Technol 36:4–68. https://doi.org/10.1115/1.3453186

    Article  Google Scholar 

  24. Ye YX, Chen XD, Hu YT, Luo X (2010) Effects of recess shapes on pneumatic hammering in aerostatic bearings. Proc Inst Mech Eng Part J J Eng Tribol 224(3):231–37. https://doi.org/10.1243/13506501JET664

    Article  Google Scholar 

  25. Wei M, Jiwen C, Yongmeng L, Jiubin T (2016) Improving the pneumatic hammer stability of aerostatic thrust bearing with recess using damping orifices. Tribol Int 103:281–288. https://doi.org/10.1016/j.triboint.2016.06.009

    Article  Google Scholar 

  26. Talukder HM, Stowell TB (2003) Pneumatic hammer in an externally pressurized orifice-compensated air journal bearing. Tribol Int 36(8):585–591. https://doi.org/10.1016/S0301-679X(02)00247-5

    Article  Google Scholar 

  27. Jacob JS, Yu JJ, Bentley DE, Goldman P (2001) Air-hammer instability of externally pressurized compressible-fluid bearings. Proc ISCORMA 1:20–24

    Google Scholar 

  28. Arghir M, Hassini M, Balducchi F, Gauthier R (2015) Synthesis of experimental and theoretical analysis of pneumatic hammer instability in an aerostatic bearing. ASME J Eng Gas Turbines Power 138(2):021602. https://doi.org/10.1115/1.4031322

    Article  Google Scholar 

  29. Li J, Li Q, Yang SQ, Yu F, Li XM (2018) Stability and nonlinear dynamic analysis of gas-lubricated system with elastomer suspension. Nonlinear Dyn 94:2161–2176. https://doi.org/10.1007/s11071-018-4481-x

    Article  Google Scholar 

  30. Wang CC, Jang MJ, Yeh YL (2007) Bifurcation and nonlinear dynamic analysis of a flexible rotor supported by relative short gas journal bearings. Chaos Solitons Fractals 32(2):566–582. https://doi.org/10.1016/j.chaos.2005.10.098

    Article  Google Scholar 

  31. Yang P, Zhu KQ, Wang XL (2009) On the non-linear stability of self-acting gas journal bearings. Tribol Int 42(1):71–76. https://doi.org/10.1016/j.triboint.2008.05.007

    Article  Google Scholar 

  32. Zhang J, Kang W, Liu Y (2009) Numerical method and bifurcation analysis of jeffcott rotor system supported in gas journal bearings. ASME J Comput Nonlinear Dyn 4(1):011007. https://doi.org/10.1115/1.3007973

    Article  Google Scholar 

  33. Rashidi R, Karami MA, Bakhtiari NF (2010) Bifurcation and nonlinear dynamic analysis of a rigid rotor supported by two-lobe noncircular gas-lubricated journal bearing system. Nonlinear Dyn 61:783–802. https://doi.org/10.1007/s11071-010-9687-5

    Article  MATH  Google Scholar 

  34. Wang W, Lo C, Chen C (2002) Nonlinear dynamic analysis of a flexible rotor supported by externally pressurized porous gas journal bearings. ASME J Tribol 124(3):553–561. https://doi.org/10.1115/1.1467637

    Article  Google Scholar 

  35. Cheng-Chi W, Her-Terng Y (2010) Theoretical analysis of high speed spindle air bearings by a hybrid numerical method. Appl Math Comput 217(5):2084–2096. https://doi.org/10.1016/j.amc.2010.07.008

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhang J, Han D, Xie Z, Huang C, Rao Z, Song M, Su Z (2022) Nonlinear behaviors analysis of high-speed rotor system supported by aerostatic bearings. Tribol Int 170:107111. https://doi.org/10.1016/j.triboint.2021.107111

    Article  Google Scholar 

  37. Dal A, Karaçay T (2017) Effects of the misalignment on the performance of rotor-bearing systems supported by externally pressurized air bearing. Tribol Int 111(2017):276–288. https://doi.org/10.1016/j.triboint.2017.03.018

    Article  Google Scholar 

  38. Dal A, Karaçay T (2021) Pneumatic hammer instability in the aerostatic journal bearing–rotor system: a theoretical and experimental analyses. Proc Inst Mech Eng Part J J Eng Tribol 235(3):524–543. https://doi.org/10.1177/1350650120908100

    Article  Google Scholar 

Download references

Funding

The present study was supported by Turkish Council of Research and Scientific Foundation under Grant No. 112M847.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdurrahim Dal.

Additional information

Technical Editor: Pedro Manuel Calas Lopes Pacheco.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dal, A., Karaçay, T. Dynamics of a rotor-aerostatic journal bearings system with asymmetric air feeding. J Braz. Soc. Mech. Sci. Eng. 44, 317 (2022). https://doi.org/10.1007/s40430-022-03601-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-022-03601-z

Keywords

Navigation