Skip to main content
Log in

Thermo-elastic-plastic deformation of semi-infinite medium under effects of fractal dimension and sliding speed

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This study uses elastic–plastic contact theory to analyze the effects of surface roughness and sliding speed on thermo-mechanical deformation and frictional heating of elastic–plastic semi-infinite medium in sliding contact with the fractal rough surface. The evolution of deformation in the semi-infinite medium due to multi-scale surface roughness variation was interpreted in terms of temperature rise, contact pressure; normal and von Mises equivalent stresses using the finite element method. The effect of sliding speed on frictional heating and deformation using time change was also analyzed. This study shows that frictional heating is sensitive to fractal dimension, and sliding speed has a strong effect on frictional heating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Blok H (1937) Theoretical study of temperature rise at surfaces of actual contact under oilness lubricating conditions, proceedings general discussion on lubrication and lubricants. Inst Mech Eng (London) 2:222–235

    Google Scholar 

  2. Jaeger JC (1942) Moving sources of heat and the temperature at sliding contacts. Proc R Soc NSW 76:203–224

    Google Scholar 

  3. Francis HA (1970) Interfacial temperature distribution within a sliding hertzian contact. ASLE Trans 14:41–54

    Article  Google Scholar 

  4. Tian XF, Kennedy FE (1994) Maximum and average flash temperatures in sliding contacts. ASME J Tribol 116:167–173

    Article  Google Scholar 

  5. Barber JR (1984) Thermoelastic displacements and stresses due to a heat source moving over the surface of a half plane. ASME J Appl Mech 51:636–640

    Article  MATH  Google Scholar 

  6. Ju FD, Liu JC (1988) Effect of peclet number in thermomechanical cracking due to high-speed friction load. ASME J Tribol 110:217–221

    Article  Google Scholar 

  7. Leroy JM, Floquet A, Villechaise B (1989) Thermomechanical behavior of multilayered media: theory. ASME J Tribol 111:538–544

    Article  Google Scholar 

  8. Leroy JM, Floquet A, Villechaise B (1990) Thermomechanical behavior of multilayered media: results. ASME J Tribol 112:317–323

    Article  Google Scholar 

  9. Ju Y, Farris TN (1997) FFT thermoelastic solutions for moving heat sources. ASME J Tribol 119:156–162

    Article  Google Scholar 

  10. Azarkhin A, Barber JR (1986) Thermoelastic instability for the transient contact problem of two sliding half-planes. ASME J Appl Mech 53:565–572

    Article  MATH  Google Scholar 

  11. Lee K, Barber JR (1993) Frictionally-excited thermoelastic instability in automotive disk brakes. ASME J Tribol 115:607–614

    Article  Google Scholar 

  12. Chen W, Wang QJ (2008) Thermomechanical analysis of elastoplastic bodies in a sliding spherical contact and the effects of sliding speed, heat partition, and thermal softening. ASME J. Tribol 130:041402

    Article  Google Scholar 

  13. Wang S, Komvopoulos K (1994) A fractal theory of the interfacial temperature distribution in the slow sliding regime: part I—elastic contact and heat transfer analysis. ASME J Tribol 116:812–823

    Article  Google Scholar 

  14. Wang S, Komvopoulos K (1995) A fractal theory of the temperature distribution at elastic contacts of fast sliding surfaces. ASME J Tribol 117:203–215

    Article  Google Scholar 

  15. Komvopoulos K (2008) Effects of multi-scale roughness and frictional heating on solid body contact deformation. C R Mec 336:149–162

    Article  MATH  Google Scholar 

  16. Wang Q, Liu G (1999) A thermoelastic asperity contact model considering steady- state heat transfer. Tribol Trans 42:763–770

    Article  Google Scholar 

  17. Liu SB, Wang Q (2003) Transient thermoelastic stress fields in a half-space. ASME J Tribol 125:33–43

    Article  Google Scholar 

  18. Liu SB, Wang Q (2001) A three-dimensional thermomechanical model of contact between non-conforming rough surfaces. ASME J Tribol 123:17–26

    Article  Google Scholar 

  19. Tian XF, Kennedy FE (1993) Temperature rise at the sliding contact interface for a coated semi infinite body. ASME J Tribol 115:1–9

    Article  Google Scholar 

  20. Tian XF, Kennedy FE (1994) Maximum and average flash temperatures in sliding contacts. ASME J Tribol 116:167–174

    Article  Google Scholar 

  21. Kennedy FE (1984) Thermal and thermomechanical effects in dry sliding. Wear 100:453–476

    Article  Google Scholar 

  22. Vick B, Golan LP, Furey MJ (1994) Thermal effects due to surface films in sliding contact. ASME J Tribol 116:238–246

    Article  Google Scholar 

  23. Kennedy FE, Ling FF (1974) Elasto-plastic indentation of a layered medium. ASME J Eng Mater Technol 96:97–103

    Article  Google Scholar 

  24. Day AJ, Newcomb TP (1984) The dissipation of frictional energy from the interface of an annular disk brake. Proc Inst Mech Eng 198D:201–209

    Article  Google Scholar 

  25. Kulkarni SM, Rubin CA, Hahn GT (1991) Elasto-plastic coupled temperature-displacement finite element analysis of two-dimensional rolling-sliding contact with a translating heat source. ASME J Tribol 113:93–101

    Article  Google Scholar 

  26. Gupta V, Bastias P, Hahn GT, Rubin CA (1993) Elastoplastic finite-element analysis of 2-D rolling-plus-sliding contact with temperature-dependent bearing steel material properties. Wear 169:251–256

    Article  Google Scholar 

  27. Cho SS, Komvopoulos K (1997) Thermoelastic finite element analysis of subsurface cracking due to sliding surface traction. ASME J Eng Mater Technol 119:71–78

    Article  Google Scholar 

  28. Ye N, Komvopoulos K (2003) Three-dimensional finite element analysis of elastic-plastic layered media under thermomechanical surface loading. ASME J Tribol 125:52–59

    Article  Google Scholar 

  29. Gong Z-Q, Komvopoulos K (2004) Mechanical and thermomechanical elastic-plastic contact analysis of layered media with patterned surfaces. ASME J Tribol 126:9–17

    Article  Google Scholar 

  30. Gong Z-Q, Komvopoulos K (2005) Thermomechanical analysis of semi-infinite solid in sliding contact with a fractal surface. ASME J Tribol 127:331–342

    Article  Google Scholar 

  31. Abuzeid OM, Eberhard P (2007) Linear viscoelastic creep model for the contact of nominal flat surfaces based on fractal geometry: standard linear solid (sls) material. ASME J Tribol 129:461–466

    Article  Google Scholar 

  32. Ray S (2007) At the contact between sliding bodies nanoscales surface roughness. ASME J, Tribol 129:467–480

    Article  Google Scholar 

  33. Sahoo P, Ghosh N (2007) Finite element contact analysis of fractal surfaces. J Physics D Appl Phys 40:4245–4252

    Article  Google Scholar 

  34. Sofuoglu H, Ozer A (2008) Thermomechanical analysis of elastoplastic medium in sliding contact with fractal surface. Tribol Int 41(8):783–796

    Article  Google Scholar 

  35. Mandelbrot BB (1983) The fractal geometry of nature. Freeman, New York

    Google Scholar 

  36. Majumdar A, Tien CL (1990) Fractal characterization simulation of rough surfaces. Wear 136:313–327

    Article  Google Scholar 

  37. Komvopoulos K (2000) Head-disk interface contact mechanics for ultrahigh density magnetic recording. Wear 238:1–11

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaettin Ozer.

Additional information

Technical Editor: Fernando Alves Rochinha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozer, A. Thermo-elastic-plastic deformation of semi-infinite medium under effects of fractal dimension and sliding speed. J Braz. Soc. Mech. Sci. Eng. 38, 609–619 (2016). https://doi.org/10.1007/s40430-015-0384-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40430-015-0384-7

Keywords

Navigation