Skip to main content

Advertisement

Log in

Targeting the Brain Stress Systems for the Treatment of Tobacco/Nicotine Dependence: Translating Preclinical and Clinical Findings

  • Tobacco (AH Weinberger, Section Editor)
  • Published:
Current Addiction Reports Aims and scope Submit manuscript

Abstract

Purpose of review

Tobacco use is the leading cause of preventable mortality in the USA, and Food and Drug Administration (FDA) approved medications fail to maintain long-term abstinence for the majority of smokers.

Recent findings

One of the principal mechanisms associated with the initiation, maintenance of, and relapse to smoking is stress. Targeting the brain stress systems as a potential treatment strategy for tobacco dependence may be of therapeutic benefit.

Summary

This review explores brain stress systems in tobacco use and dependence. The corticotropin-releasing factor (CRF) system, the hypothalamic-pituitary-adrenal (HPA) axis, and the noradrenergic system are discussed in relation to tobacco use. Preclinical and clinical investigations targeting these stress systems as treatment strategies for stress-induced tobacco use are also discussed. Overall, nicotine-induced activation of the CRF system and subsequent activation of the HPA axis and noradrenergic system may be related to stress-induced nicotine-motivated behaviors. Pharmacological agents that decrease stress-induced hyperactivation of these brain stress systems may improve smoking-related outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Agaku IT, King BA, Dube SR. Current cigarette smoking among adults—United States, 2005–2012. MMWR Morb Mortal Wkly Rep. 2014;63(2):29–34.

    PubMed  Google Scholar 

  2. World Health Organization (WHO). WHO global report on trends in prevalence of tobacco smoking 2015 2015 [cited 2016 January 26]. Available from: http://apps.who.int/iris/bitstream/10665/156262/1/9789241564922_eng.pdf?ua=1.

  3. Centers for Disease Control and Prevention (CDC). Smoking-attributable mortality, years of potential life lost, and productivity losses—United States, 2000–2004. MMWR Morb Mortal Wkly Rep. 2008;57(45):1226–8.

    Google Scholar 

  4. US Department of Health Human Services. The health consequences of smoking—50 years of progress: a report of the Surgeon General. Atlanta: US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health; 2014. p. 17.

    Google Scholar 

  5. Jorenby DE, Hays JT, Rigotti NA, Azoulay S, Watsky EJ, Williams KE, et al. Efficacy of varenicline, an α4β2 nicotinic acetylcholine receptor partial agonist, vs placebo or sustained-release bupropion for smoking cessation: a randomized controlled trial. JAMA. 2006;296(1):56–63. doi:10.1001/jama.296.1.56.

    Article  CAS  PubMed  Google Scholar 

  6. McKee SA, Maciejewski PK, Falba T, Mazure CM. Sex differences in the effects of stressful life events on changes in smoking status. Addiction. 2003;98(6):847–55. doi:10.1046/j.1360-0443.2003.00408.x.

    Article  PubMed  Google Scholar 

  7. al’Absi M. Hypothalamic–pituitary–adrenocortical responses to psychological stress and risk for smoking relapse. Int J Psychophysiol. 2006;59(3):218–27. doi:10.1016/j.ijpsycho.2005.10.010.

    Article  PubMed  Google Scholar 

  8. Shiffman S. Relapse following smoking cessation: a situational analysis. J Consult Clin Psychol. 1982;50(1):71–86.

    Article  CAS  PubMed  Google Scholar 

  9. Borland R. Slip-ups and relapse in attempts to quit smoking. Addict Behav. 1990;15(3):235–45. doi:10.1016/0306-4603(90)90066-7.

    Article  CAS  PubMed  Google Scholar 

  10. Brandon TH. Negative affect as motivation to smoke. Curr Dir Psychol Sci. 1994;3(2):33–7. doi:10.2307/20182258.

    Article  Google Scholar 

  11. Shiffman S, Paty JA, Gnys M, Kassel JA, Hickcox M. First lapses to smoking: within-subjects analysis of real-time reports. J Consult Clin Psych. 1996;64(2):366. doi:10.1037/0022-006X.64.2.366.

    Article  CAS  Google Scholar 

  12. Shiffman S, Waters AJ. Negative affect and smoking lapses: a prospective analysis. J Consult Clin Psychol. 2004;72(2):192–201. doi:10.1037/0022-006x.72.2.192.

    Article  PubMed  Google Scholar 

  13. McKee SA, Sinha R, Weinberger AH, Sofuoglu M, Harrison EL, Lavery M, et al. Stress decreases the ability to resist smoking and potentiates smoking intensity and reward. J Psychopharmacol. 2011;25(4):490–502. doi:10.1177/0269881110376694.

    Article  PubMed  Google Scholar 

  14. Koob GF. Brain stress systems in the amygdala and addiction. Brain Res. 2009;1293:61–75. doi:10.1016/j.brainres.2009.03.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Morse DE. Neuroendocrine responses to nicotine and stress: enhancement of peripheral stress responses by the administration of nicotine. Psychopharmacology. 1989;98(4):539–43. doi:10.1007/BF00441956.

    Article  CAS  PubMed  Google Scholar 

  16. Vale W, Spiess J, Rivier C, Rivier J. Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science. 1981;213(4514):1394–7.

    Article  CAS  PubMed  Google Scholar 

  17. Swanson LW, Sawchenko PE, Rivier J, Vale WW. Organization of ovine corticotropin-releasing factor immunoreactive cells and fibers in the rat brain: an immunohistochemical study. Neuroendocrinology. 1983;36(3):165–86.

    Article  CAS  PubMed  Google Scholar 

  18. Van Pett K, Viau V, Bittencourt JC, Chan RK, Li HY, Arias C, et al. Distribution of mRNAs encoding CRF receptors in brain and pituitary of rat and mouse. J Comp Neurol. 2000;428(2):191–212.

    Article  PubMed  Google Scholar 

  19. Spiess J, Rivier J, Rivier C, Vale W. Primary structure of corticotropin-releasing factor from ovine hypothalamus. Proc Natl Acad Sci. 1981;78(10):6517–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Koob GF, Zorrilla EP. Neurobiological mechanisms of addiction: focus on corticotropin-releasing factor. Curr Opin Investig Drugs (London, England: 2000). 2010;11(1):63.

    CAS  Google Scholar 

  21. Koob GF, Heinrichs SC. A role for corticotropin releasing factor and urocortin in behavioral responses to stressors. Brain Res. 1999;848(1):141–52.

    Article  CAS  PubMed  Google Scholar 

  22. Makino S, Hashimoto K, Gold PW. Multiple feedback mechanisms activating corticotropin-releasing hormone system in the brain during stress. Pharmacol Biochem Behav. 2002;73(1):147–58.

    Article  CAS  PubMed  Google Scholar 

  23. Heinrichs SC, Menzaghi F, Pich EM, Baldwin HA, Rassnick S, Britton KT, et al. Anti-stress action of a corticotropin-releasing factor antagonist on behavioral reactivity to stressors of varying type and intensity. Neuropsychopharmacology. 1994;11(3):179–86.

    Article  CAS  PubMed  Google Scholar 

  24. Matta SG, Beyer HS, McAllen KM, Sharp BM. Nicotine elevates rat plasma ACTH by a central mechanism. J Pharmacol Exp Ther. 1987;243(1):217–26.

    CAS  PubMed  Google Scholar 

  25. George O, Ghozland S, Azar MR, Cottone P, Zorrilla EP, Parsons LH, et al. CRF-CRF1 system activation mediates withdrawal-induced increases in nicotine self-administration in nicotine-dependent rats. Proc Natl Acad Sci U S A. 2007;104(43):17198–203. doi:10.1073/pnas.0707585104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bruijnzeel AW, Prado M, Isaac S. Corticotropin-releasing factor-1 receptor activation mediates nicotine withdrawal-induced deficit in brain reward function and stress-induced relapse. Biol Psychiatry. 2009;66(2):110–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Aydin C, Oztan O, Isgor C. Vulnerability to nicotine abstinence-related social anxiety-like behavior: molecular correlates in neuropeptide Y, Y2 receptor and corticotropin releasing factor. Neurosci Lett. 2011;490(3):220–5.

    Article  CAS  PubMed  Google Scholar 

  28. Torres OV, Gentil LG, Natividad LA, Carcoba LM, O’Dell LE. Behavioral, biochemical, and molecular indices of stress are enhanced in female versus male rats experiencing nicotine withdrawal. Front Psychiatry. 2013;4:38. doi:10.3389/fpsyt.2013.00038. This study demonstrated that female rats exhibited increased levels of plasma corticosterone and CRF mRNA in the nucleus accumbens during nicotine withdrawal relative to their male counterparts. Male rats exhibited increased levels of plasma corticosterone and CRF mRNA in the amygdala during nicotine exposure. Sex differences highlighted in this study suggest that female smokers may be more sensitive to stress produced by nicotine withdrawal.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tucci S, Cheeta S, Seth P, File SE. Corticotropin releasing factor antagonist, α-helical CRF9–41, reverses nicotine-induced conditioned, but not unconditioned, anxiety. Psychopharmacology. 2003;167(3):251–6.

    CAS  PubMed  Google Scholar 

  30. Zislis G, Desai TV, Prado M, Shah HP, Bruijnzeel AW. Effects of the CRF receptor antagonist D-Phe CRF(12–41) and the alpha2-adrenergic receptor agonist clonidine on stress-induced reinstatement of nicotine-seeking behavior in rats. Neuropharmacology. 2007;53(8):958–66. doi:10.1016/j.neuropharm.2007.09.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bruijnzeel AW, Zislis G, Wilson C, Gold MS. Antagonism of CRF receptors prevents the deficit in brain reward function associated with precipitated nicotine withdrawal in rats. Neuropsychopharmacology. 2007;32(4):955–63.

    Article  CAS  PubMed  Google Scholar 

  32. Marcinkiewcz CA, Prado MM, Isaac SK, Marshall A, Rylkova D, Bruijnzeel AW. Corticotropin-releasing factor within the central nucleus of the amygdala and the nucleus accumbens shell mediates the negative affective state of nicotine withdrawal in rats. Neuropsychopharmacology. 2009;34(7):1743–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bruijnzeel AW, Ford J, Rogers JA, Scheick S, Ji Y, Bishnoi M, et al. Blockade of CRF1 receptors in the central nucleus of the amygdala attenuates the dysphoria associated with nicotine withdrawal in rats. Pharmacol Biochem Behav. 2012;101(1):62–8.

    Article  CAS  PubMed  Google Scholar 

  34. Baiamonte BA, Valenza M, Roltsch EA, Whitaker AM, Baynes BB, Sabino V, et al. Nicotine dependence produces hyperalgesia: role of corticotropin-releasing factor-1 receptors (CRF1Rs) in the central amygdala (CeA). Neuropharmacology. 2014;77:217–23.

    Article  CAS  PubMed  Google Scholar 

  35. Grieder TE, Herman MA, Contet C, Tan LA, Vargas-Perez H, Cohen A, et al. VTA CRF neurons mediate the aversive effects of nicotine withdrawal and promote intake escalation. Nat Neurosci. 2014;17(12):1751–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Brielmaier J, McDonald CG, Smith RF. Effects of acute stress on acquisition of nicotine conditioned place preference in adolescent rats: a role for corticotropin-releasing factor 1 receptors. Psychopharmacology. 2012;219(1):73–82. doi:10.1007/s00213-011-2378-1.

    Article  CAS  PubMed  Google Scholar 

  37. Tang X, Zhan S, Yang L, Cui W, Ma JZ, Payne TJ, et al. Ethnic-specific genetic association of variants in the corticotropin-releasing hormone receptor 1 gene with nicotine dependence. Biomed Res Int. 2015;2015:263864.

    PubMed  PubMed Central  Google Scholar 

  38. Koob GF, Zorrilla EP. Update on corticotropin-releasing factor pharmacotherapy for psychiatric disorders: a revisionist view. Neuropsychopharmacology. 2012;37(1):308.

    Article  CAS  PubMed  Google Scholar 

  39. Kwako LE, Spagnolo PA, Schwandt ML, Thorsell A, George DT, Momenan R, et al. The corticotropin releasing hormone-1 (CRH1) receptor antagonist pexacerfont in alcohol dependence: a randomized controlled experimental medicine study. Neuropsychopharmacology. 2015;40(5):1053–63.

    Article  CAS  PubMed  Google Scholar 

  40. Grillon C, Hale E, Lieberman L, Davis A, Pine DS, Ernst M. The CRH1 antagonist GSK561679 increases human fear but not anxiety as assessed by startle. Neuropsychopharmacology. 2015;40(5):1064–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dunlop BW, Rothbaum BO, Binder EB, Duncan E, Harvey PD, Jovanovic T, et al. Evaluation of a corticotropin releasing hormone type 1 receptor antagonist in women with posttraumatic stress disorder: study protocol for a randomized controlled trial. Trials. 2014;15(1):240.

    Article  PubMed  PubMed Central  Google Scholar 

  42. O’Dell LE, Torres OV. A mechanistic hypothesis of the factors that enhance vulnerability to nicotine use in females. Neuropharmacology. 2014;76:566–80.

    Article  PubMed  Google Scholar 

  43. Bangasser DA, Curtis A, Reyes BA, Bethea TT, Parastatidis I, Ischiropoulos H, et al. Sex differences in corticotropin-releasing factor receptor signaling and trafficking: potential role in female vulnerability to stress-related psychopathology. Mol Psychiatry. 2010;15(9):896–904.

    Article  CAS  Google Scholar 

  44. Rohleder N, Kirschbaum C. The hypothalamic-pituitary-adrenal (HPA) axis in habitual smokers. Int J Psychophysiol. 2006;59(3):236–43. doi:10.1016/j.ijpsycho.2005.10.012.

    Article  PubMed  Google Scholar 

  45. Arborelius L, Owens M, Plotsky P, Nemeroff C. The role of corticotropin-releasing factor in depression and anxiety disorders. J Endocrinol. 1999;160(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  46. Balfour DJ. Influence of nicotine on the release of monoamines in the brain. Prog Brain Res. 1989;79:165–72.

    Article  CAS  PubMed  Google Scholar 

  47. Steptoe A, Ussher M. Smoking, cortisol and nicotine. Int J Psychophysiol. 2006;59(3):228–35. doi:10.1016/j.ijpsycho.2005.10.011.

    Article  PubMed  Google Scholar 

  48. Mendelson JH, Goletiani N, Sholar MB, Siegel AJ, Mello NK. Effects of smoking successive low- and high-nicotine cigarettes on hypothalamic-pituitary-adrenal axis hormones and mood in men. Neuropsychopharmacology. 2008;33(4):749–60. doi:10.1038/sj.npp.1301455.

    Article  CAS  PubMed  Google Scholar 

  49. Mendelson JH, Sholar MB, Goletiani N, Siegel AJ, Mello NK. Effects of low- and high-nicotine cigarette smoking on mood states and the HPA axis in men. Neuropsychopharmacology. 2005;30(9):1751–63. doi:10.1038/sj.npp.1300753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gilbert DG, Meliska CJ, Williams CL, Jensen RA. Subjective correlates of cigarette-smoking-induced elevations of peripheral beta-endorphin and cortisol. Psychopharmacology. 1992;106(2):275–81.

    Article  CAS  PubMed  Google Scholar 

  51. Kirschbaum C, Wüst S, Strasburger C. ‘Normal’cigarette smoking increases free cortisol in habitual smokers. Life Sci. 1992;50(6):435–42.

    Article  CAS  PubMed  Google Scholar 

  52. Baron JA, Comi RJ, Cryns V, Brinck-Johnsen T, Mercer NG. The effect of cigarette smoking on adrenal cortical hormones. J Pharmacol Exp Ther. 1995;272(1):151–5.

    CAS  PubMed  Google Scholar 

  53. Chen H, Fu Y, Sharp BM. Chronic nicotine self-administration augments hypothalamic–pituitary–adrenal responses to mild acute stress. Neuropsychopharmacology. 2008;33(4):721–30.

    Article  CAS  PubMed  Google Scholar 

  54. Goeders N, Guerin G. Effects of surgical and pharmacological adrenalectomy on the initiation and maintenance of intravenous cocaine self-administration in rats. Brain Res. 1996;722(1):145–52.

    Article  CAS  PubMed  Google Scholar 

  55. Goeders NE, Peltier RL, Guerin GF. Ketoconazole reduces low dose cocaine self-administration in rats. Drug Alcohol Depend. 1998;53(1):67–77.

    Article  CAS  PubMed  Google Scholar 

  56. Goeders NE, Cohen A, Fox BS, Azar MR, George O, Koob GF. Effects of the combination of metyrapone and oxazepam on intravenous nicotine self-administration in rats. Psychopharmacology. 2012;223(1):17–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. al’Absi M, Wittmers LE, Erickson J, Hatsukami D, Crouse B. Attenuated adrenocortical and blood pressure responses to psychological stress in ad libitum and abstinent smokers. Pharmacol Biochem Behav. 2003;74(2):401–10.

    Article  PubMed  Google Scholar 

  58. al’Absi M, Hatsukami D, Davis GL. Attenuated adrenocorticotropic responses to psychological stress are associated with early smoking relapse. Psychopharmacology. 2005;181(1):107–17.

    Article  PubMed  Google Scholar 

  59. al’Absi M, Nakajima M, Allen S, Lemieux A, Hatsukami D. Sex differences in hormonal responses to stress and smoking relapse: a prospective examination. Nicotine Tob Res. 2015;17(4):382–9. This study demonstrated sex differences in cortisol levels following acute abstinence in nicotine-dependent women and men. Elevated cortisol levels predicted smoking relapse in women, whereas lower cortisol levels predicted smoking relapse in men.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Childs E, de Wit H. Hormonal, cardiovascular, and subjective responses to acute stress in smokers. Psychopharmacology. 2009;203(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  61. Wong JA, Pickworth WB, Waters AJ, al’Absi M, Leventhal AM. Cortisol levels decrease after acute tobacco abstinence in regular smokers. Hum Psychopharmacol. 2014;29(2):152–62. doi:10.1002/hup.2382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. McKee SA, Sinha R, Weinberger AH, Sofuoglu M, Harrison EL, Lavery M, et al. Stress decreases the ability to resist smoking and potentiates smoking intensity and reward. J Psychopharmacol (Oxford, England). 2011;25(4):490–502. doi:10.1177/0269881110376694.

    Article  Google Scholar 

  63. McKee SA, Potenza MN, Kober H, Sofuoglu M, Arnsten AF, Picciotto MR, et al. A translational investigation targeting stress-reactivity and prefrontal cognitive control with guanfacine for smoking cessation. J Psychopharmacol. 2014;29(3):300–11. doi:10.1177/0269881114562091. This translational investigation demonstrated that stress increased tobacco craving, quickened time to smoke, increase ad-lib smoking behavior, and decreased cortisol levels in nicotine-deprived smokers. Guanfacine, an α2-adrenergic agonist, reduced these stress-induced effects on smoking behavior and normalized HPA activation.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Moore R, Bloom F. Central catecholamine neuron systems: anatomy and physiology of the norepinephrine and epinephrine systems. Annu Rev Neurosci. 1979;2(1):113–68. doi:10.1146/annurev.ne.02.030179.000553.

    Article  CAS  PubMed  Google Scholar 

  65. Weinshenker D, Schroeder JP. There and back again: a tale of norepinephrine and drug addiction. Neuropsychopharmacology. 2006;32(7):1433–51. doi:10.1038/sj.npp.1301263.

    Article  PubMed  Google Scholar 

  66. Koob GF. A role for brain stress systems in addiction. Neuron. 2008;59(1):11–34. doi:10.1016/j.neuron.2008.06.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Verplaetse TL, Weinberger AH, Smith PH, Cosgrove KP, Mineur YS, Picciotto MR, et al. Targeting the noradrenergic system for gender-sensitive medication development for tobacco dependence. Nicotine Tob Res. 2015;17(4):486–95. doi:10.1093/ntr/ntu280.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Berridge CW, Waterhouse BD. The locus coeruleus–noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Rev. 2003;42(1):33–84. doi:10.1016/S0165-0173(03)00143-7.

    Article  PubMed  Google Scholar 

  69. Unnerstall JR. Localizing the alpha-1 adrenergic receptor in the central nervous system. In: Ruffolo RR, editor. The alpha-1 adrenergic receptors: Clifton: Humana; 1987. p. 71–109.

  70. Pieribone VA, Nicholas AP, Dagerlind A, Hökfelt T. Distribution of ∼ 1 adrenoceptors in rat brain revealed by in situ hybridization experiments utilizing subtype-specific probes. J Neurosci. 1994;14:4252.

    CAS  PubMed  Google Scholar 

  71. Tanaka M, Yoshida M, Emoto H, Ishii H. Noradrenaline systems in the hypothalamus, amygdala and locus coeruleus are involved in the provocation of anxiety: basic studies. Eur J Pharmacol. 2000;405(1):397–406. doi:10.1016/S0014-2999(00)00569-0.

    Article  CAS  PubMed  Google Scholar 

  72. Mitchell S. Role of the locus coeruleus in the noradrenergic response to a systemic administration of nicotine. Neuropharmacology. 1993;32(10):937–49. doi:10.1016/0028-3908(93)90058-B.

    Article  CAS  PubMed  Google Scholar 

  73. Smith MA, Brady LS, Glowa J, Gold PW, Herkenham M. Effects of stress and adrenalectomy on tyrosine hydroxylase mRNA levels in the locus ceruleus by in situ hybridization. Brain Res. 1991;544(1):26–32. doi:10.1016/0006-8993(91)90881-U.

    Article  CAS  PubMed  Google Scholar 

  74. Benowitz NL, Gourlay SG. Cardiovascular toxicity of nicotine: implications for nicotine replacement therapy 1. J Am Coll Cardiol. 1997;29(7):1422–31. doi:10.1016/S0735-1097(97)00079-X.

    Article  CAS  PubMed  Google Scholar 

  75. Klimek V, Zhu M-Y, Dilley G, Konick L, Overholser JC, Meltzer HY, et al. Effects of long-term cigarette smoking on the human locus coeruleus. Arch Gen Psychiatry. 2001;58(9):821–7. doi:10.1001/archpsyc.58.9.821.

    Article  CAS  PubMed  Google Scholar 

  76. Grella SL, Funk D, Coen K, Li Z, Le AD. Role of the kappa-opioid receptor system in stress-induced reinstatement of nicotine seeking in rats. Behav Brain Res. 2014;265:188–97. doi:10.1016/j.bbr.2014.02.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Li S, Zou S, Coen K, Funk D, Shram MJ, Le AD. Sex differences in yohimbine-induced increases in the reinforcing efficacy of nicotine in adolescent rats. Addict Biol. 2014;19(2):156–64. doi:10.1111/j.1369-1600.2012.00473.x.

    Article  CAS  PubMed  Google Scholar 

  78. Forget B, Wertheim C, Mascia P, Pushparaj A, Goldberg SR, Le Foll B. Noradrenergic alpha1 receptors as a novel target for the treatment of nicotine addiction. Neuropsychopharmacology. 2010;35(8):1751–60. doi:10.1038/npp.2010.42.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Bruijnzeel AW, Bishnoi M, van Tuijl IA, Keijzers KF, Yavarovich KR, Pasek TM, et al. Effects of prazosin, clonidine, and propranolol on the elevations in brain reward thresholds and somatic signs associated with nicotine withdrawal in rats. Psychopharmacology. 2010;212(4):485–99. doi:10.1007/s00213-010-1970-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yamada H, Bruijnzeel AW. Stimulation of alpha2-adrenergic receptors in the central nucleus of the amygdala attenuates stress-induced reinstatement of nicotine seeking in rats. Neuropharmacology. 2011;60(2–3):303–11. doi:10.1016/j.neuropharm.2010.09.013.

    Article  CAS  PubMed  Google Scholar 

  81. Feltenstein MW, Ghee SM, See RE. Nicotine self-administration and reinstatement of nicotine-seeking in male and female rats. Drug Alcohol Depend. 2012;121(3):240–6.

    Article  CAS  PubMed  Google Scholar 

  82. Villegier AS, Lotfipour S, Belluzzi JD, Leslie FM. Involvement of alpha1-adrenergic receptors in tranylcypromine enhancement of nicotine self-administration in rat. Psychopharmacology. 2007;193(4):457–65. doi:10.1007/s00213-007-0799-7.

    Article  CAS  PubMed  Google Scholar 

  83. Chiamulera C, Tedesco V, Zangrandi L, Giuliano C, Fumagalli G. Propranolol transiently inhibits reinstatement of nicotine-seeking behaviour in rats. J Psychopharmacol. 2010;24(3):389–95.

    Article  CAS  PubMed  Google Scholar 

  84. Sofuoglu M, Mouratidis M, Yoo S, Kosten T. Adrenergic blocker carvedilol attenuates the cardiovascular and aversive effects of nicotine in abstinent smokers. Behav Pharmacol. 2006;17(8):731–5. doi:10.1097/FBP.0b013e32801155d4.

    Article  CAS  PubMed  Google Scholar 

  85. Sofuoglu M, Babb D, Hatsukami DK. Labetalol treatment enhances the attenuation of tobacco withdrawal symptoms by nicotine in abstinent smokers. Nicotine Tob Res. 2003;5(6):947–53. doi:10.1080/14622200310001615312.

    Article  CAS  PubMed  Google Scholar 

  86. McKee SA. Why is it more difficult for women to quit smoking? American Psychological Association Annual Convention Honolulu, HI: Translating knowledge into practice; 2013.

    Google Scholar 

  87. Glassman AH, Jackson WK, Walsh BT, Roose SP, Rosenfeld B. Cigarette craving, smoking withdrawal, and clonidine. Science. 1984;226(4676):864–6.

    Article  CAS  PubMed  Google Scholar 

  88. Gourlay SG, Stead LF, Benowitz N. Clonidine for smoking cessation. Cochrane Database Syst Rev. 2004;3:CD000058. doi:10.1002/14651858.CD000058.pub2/pdf/standard.

    PubMed  Google Scholar 

  89. Glassman AH, Stetner F, Walsh BT, Raizman PS, Fleiss JL, Cooper TB, et al. Heavy smokers, smoking cessation, and clonidine: results of a double-blind, randomized trial. JAMA. 1988;259(19):2863–6. doi:10.1001/jama.1988.03720190031026.

    Article  CAS  PubMed  Google Scholar 

  90. Covey LS, Glassman AH. A meta‐analysis of double‐blind placebo‐controlled trials of clonidine for smoking cessation. Br J Addict. 1991;86(8):991–8. doi:10.1111/j.1360-0443.1991.tb01860.x.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Biruktawit Assefa for the assistance with the literature review. This work was supported by NIH grants T32DA007238 (TLV), P50DA033945 (SAM), and R01AA022285 (SAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terril L. Verplaetse.

Ethics declarations

Conflict of Interest

Terril L. Verplaetse, PhD and Sherry A. McKee, PhD declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors. Terril L. Verplaetse, PhD and Sherry A. McKee, PhD contributed to studies cited in the article. An institutional research ethics board approved each of these studies, and each conformed to the ethical principles outlined in the Declaration of Helsinki.

Additional information

This article is part of the Topical Collection on Tobacco

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verplaetse, T.L., McKee, S.A. Targeting the Brain Stress Systems for the Treatment of Tobacco/Nicotine Dependence: Translating Preclinical and Clinical Findings. Curr Addict Rep 3, 314–322 (2016). https://doi.org/10.1007/s40429-016-0115-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40429-016-0115-x

Keywords

Navigation