Skip to main content

Advertisement

Log in

Tupistra nutans Wall. root extract, rich in phenolics, inhibits microbial growth and α-glucosidase activity, while demonstrating strong antioxidant potential

  • Original Article
  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

The current study was performed to determine the phenolic compounds composition, antioxidant and antimicrobial activity, and α-glucosidase inhibitory effect of the root extract of Tupistra nutans Wall., in order to validate its use in traditional medicine. HPLC–MS/MS analysis showed the presence of ferulic acid, protocatechuic acid, p-hydroxybenzoic acid, p-coumaric acid, salicylic acid, chlorogenic acid, caffeic acid, l-phenylalanine as the predominant phenolic compounds. The antioxidant potentials of T. nutans were determined in different solvent extract and found to vary in a concentration-dependent manner. Ethyl acetate-soluble fraction exhibited the highest amount of phenolic acids, flavonoids, antioxidant activity against the DPPH, reduced Fe3+/ferric cyanide complexes to the ferrous form and inhibitory effect on α-glucosidase. Butanol fraction showed the strongest ABTS radical scavenging ability. Methanolic root extract showed higher reduction capability of ferric ions than the other solvent fractions. A significant and higher positive correlation was found between total phenolic content and total flavonoid content with α-glucosidase inhibition and DPPH using ethyl acetate solvent than the other solvent fractions. All the tested microorganisms: Staphylococcus aureus Rosenback (ATCC13150), Salmonella enterica typhimurium Kauffmann and Edwads (ATCC14028), Escherichia coli Castllani and Chalmers (ATCC35150), and fungi: Candida albicans Robin and Berkhout (KTCC7965), Aspergillus fumigatus Fresenius (KTCC6145), A. flavus var. flavus Link ex Fries (KTCC6143), A. niger van Tieghem (KTCC6317) were susceptible to the root extracts at a concentration of 0.12–0.25 mg mL−1. This study may allow us to understand indigenous medicinal values of T. nutans. Furthermore, these results showed that T. nutans is a good source of antioxidants along with antimicrobial and antidiabetic activities and could be used as an important bioresource for the pharmaceutical and food industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ademiluyi AO, Oboh G (2013) Soybean phenolic-rich extracts inhibit key-enzymes linked to type 2 diabetes (α-amylase and α-glucosidase) and hypertension (angiotensin I converting enzyme) in vitro. Exp Toxicol Pathol 65:305–309

    Article  CAS  PubMed  Google Scholar 

  • Amalan V, Vijayakumar N (2015) Antihyperglycemic effect of p-coumaric acid on streptozotocin induced diabetic rats. Indian J Appl Res 5:10–13

    Google Scholar 

  • Andrade-Cetto A, Becerra-Jimenez J, Cardenas-Vazquez R (2008) α-glucosidase inhibiting activity of some Mexican plants used in the treatment of type 2 diabetes. J Ethnopharmacol 116:27–32

    Article  PubMed  Google Scholar 

  • Arulmozhi P, Vijayakumar S, Kumar T (2018) Phytochemical analysis and antimicrobial activity of some medicinal plants against selected pathogenic microorganisms. Microb Pathog 123:219–226

    Article  CAS  PubMed  Google Scholar 

  • Asayama K (1990) Free radicals and diabetes mellitus. Mod Med 45:1736–1742

    CAS  Google Scholar 

  • Barros L, Ferreira MJ, Queiros B, Ferreira IC, Bapista P (2007) Total phenols, ascorbic acid, β-carotene and lycopene in Portuguese wild edible mushrooms and their antioxidant activities. Food Chem 103:413–419

    Article  CAS  Google Scholar 

  • Benzie IFF, Strain JJ (1996) Ferric reducing ability of plasma (FRAP) a measure of antioxidant power: the FRAP assay. Anal Biochem 239:70–76

    Article  CAS  PubMed  Google Scholar 

  • Brul S, Klis FM (1999) Mechanistic and mathematical inactivation studies of food spoilage fungi. Fungal Genet Biol 27:199–208

    Article  CAS  PubMed  Google Scholar 

  • Brumfitt W, Hamilton-Miller JMT, Franklin I (1990) Antibiotic activity of natural products. I. Propolis. Microbios 62:19–22

    CAS  PubMed  Google Scholar 

  • Campos FM, Coouto JA, Figueiredo AR, Toth IV, Rangel AOSS, Hogg TA (2009) Cell membrane damage induced by phenolic acids on wine lactic acid bacteria. Int J Food Microbiol 135:144–151

    Article  CAS  PubMed  Google Scholar 

  • Chaichana N (2018) Nutritional composition, antioxidant activity and phytochemical composition of Tupistra albiflora K. Larsen’s flowers. Walailak J Sci Technol 15:305–311

    Google Scholar 

  • Chakrabarti R, Rajagopalan R (2002) Diabetes and insulin resistance associated disorders: disease and the therapy. Curr Sci 83:1533–1538

    CAS  Google Scholar 

  • Chandra H, Bishnoi P, Yadav A, Patni B, Mishra AP, Nautiyal AR (2017) Antimicrobial resistance and the alternative resources with special emphasis on plant-based antimicrobials: a review. Plants 6:16

    Article  PubMed Central  CAS  Google Scholar 

  • Charpentier G, Riveline JP, Varroud-Vial M (2002) Management of drugs affecting blood glucose in diabetic patients with renal failure. Diabetes Metab 26:73–85

    Google Scholar 

  • Chettri DR, Parajuli P, Subba GC (2005) Antidiabetic plants used by Sikkim and Darjeeling Himalayan tribes, India. J Ethnopharmacol 99:199–202

    Article  Google Scholar 

  • Coniff R, Krol A (1997) A review of US clinical experience. Clin Ther 19:16–26

    Article  CAS  PubMed  Google Scholar 

  • de Brum TF, Camponogara C, Jesus RDS, Belke BV, Piana M, Boligon AA, Pires FB, Oliveira SM, da Rosa MB, de Freitas BL (2016) Ethnopharmacological study and topical anti-inflammatory activity of crude extract from Poikilacanthus glandulosus (Nees) Ariza leaves. J Ethnopharmacol 193:60–67

    Article  PubMed  Google Scholar 

  • Decker EA, Welch B (1990) Role of ferritin as a lipid oxidation catalyst in muscle food. J Agric Food Chem 38:674–677

    Article  CAS  Google Scholar 

  • Dewanto X, Wu K, Adom K, Liu RH (2002) Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agric Food Chem 50:3010–3014

    Article  CAS  PubMed  Google Scholar 

  • Edward-Jones V (2013) Alternative antimicrobial approaches to fighting multidrug resistant infections. In: Rai M, Kon K (eds) Fighting multidrug resistance with herbal extracts, essential oils and their components, vol 1. Academic Press, Amsterdam, pp 1–8

    Google Scholar 

  • Ghimire BK, Yu CY, Chung IM (2017) Assessment of the phenolic profile, antimicrobial activity and oxidative stability of transgenic Perilla frutescens L. overexpressing tocopherol methyltransferase (g-tmt) gene. Plant Physiol Biochem 118:77–87

    Article  CAS  PubMed  Google Scholar 

  • Hendra R, Ahmad S, Sukari A, Yunus Shukor M, Oskoueian E (2011) Flavonoid analyses and antimicrobial activity of various parts of Phaleria macrocarpa (Scheff.) Boerl Fruit. Int J Mol Sci 12:3422–3431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain S, Hore DK (2007) Collection and conservation of major medicinal plants of Darjeeling and Sikkim Himalayas. Indian J Tradit Knowl 6:352–357

    Google Scholar 

  • Inzucchi SE (2002) Oral antihyperglycemic therapy for type 2 diabetes: scientific review. JAMA 287:360–372

    Article  CAS  PubMed  Google Scholar 

  • Ji HF, Li XJ, Zhang HY (2009) Natural products and drug discovery. EMBO Rep 10:194–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kala CP (2005) Current status of medicinal plants used by traditional Vaidyas in Uttaranchal state of India. Ethnobot Res Appl 3:267–278

    Article  Google Scholar 

  • Khanna VG, Kannabiran K (2008) Antimicrobial activity of saponin fractions of the leaves of Gymnema sylvestre and Eclipta prostrata. World J Microbiol Biotechnol 24:2737–2740

    Article  CAS  Google Scholar 

  • Khatoon U, Sharma L, Manivannan S, Muddarsu V (2018) Proximate analysis, elemental profiling and antioxidant activities of Tupistra nutans wall grown in Sikkim Hills, India. J Pharmacogn Phytochem 7:3630–3633

    CAS  Google Scholar 

  • Kim YM, Jeong YK, Wang MH, Lee WY, Rhee H (2005) Inhibitory effect of pine extract on α-glucosidase activity and postprandial hyperglycemia. Nutrition 2:756–761

    Article  CAS  Google Scholar 

  • Kozarski M, Klaus A, Jakovljevic D, Todorovic N, Vunduk J, Petrović P, Niksic M, Vrvic MM, van Griensven L (2015) Antioxidants of edible mushrooms. Molecules 20:19489–19525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozyra M, Komsta L, Wojtanowski K (2019) Analysis of phenolic compounds and antioxidant activity of methanolic extracts from inflorescences of Carduus sp. Phytochem Lett 31:256–262

    Article  CAS  Google Scholar 

  • Kumarappan CT, Mandal SC (2008) Polyphenolic extract of Ichnocarpus frutescens attenuates diabetic complications in streptozotocin-treated diabetic rats. Ren Fail 30:307–322

    Article  CAS  PubMed  Google Scholar 

  • Li HB, Wong CC, Cheng KW, Chen F (2008) Antioxidant properties in vitro and total phenolic contents in methanol extracts from medicinal plants. LWT Food Sci Technol 41:385–390

    Article  CAS  Google Scholar 

  • Li X, Wang X, Chen D, Chen S (2011) Antioxidant activity and mechanism of protocatechuic acid in vitro. FFHD 7:232–244

    Google Scholar 

  • Liu X, Dong M, Chen X, Jiang M, Lv X, Yan G (2007) Antioxidant activity and phenolics of an endophytic Xylaria sp. from Gingko biloba. Food Chem 105:548–554

    Article  CAS  Google Scholar 

  • Liu CX, Guo ZY, Xue YH, Cheng J, Huang NY, Zhou Y, Cheng F, Zou K (2012) Five new furostanol saponins from the rhizomes of Tupistra chinensis. Fitoterapia 83:323–328

    Article  CAS  PubMed  Google Scholar 

  • Lou Z, Wang H, Zhu S, Ma C, Wang Z (2011) Antibacterial activity and mechanism of action of chlorogenic acid. J Food Sci 76:M398–M403

    Article  CAS  PubMed  Google Scholar 

  • Martins N, Barros L, Henriques M, Silva S, Ferreira ICFR (2015) Activity of phenolic compounds from plant origin against Candida species. Ind Crop Prod 74:648–670

    Article  CAS  Google Scholar 

  • Masek A, Chrzescijanska E, Latos M (2016) Determination of antioxidant activity of caffeic acid and p-coumaric acid by using electrochemical and spectrophotometric assays. Int J Electrochem Sci 11:10644–10658

    Article  CAS  Google Scholar 

  • Moreno MIN, Isla MI, Sampietro AR, Vattuone MA (2000) Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J Ethnopharmacol 7:109–114

    Article  Google Scholar 

  • Narasimhan A, Chinnaiyan M, Karundevi B (2015) Ferulic acid exerts its antidiabetic effect by modulating insulin-signalling molecules in the liver of high-fat diet and fructose-induced type-2 diabetic adult male rat. Appl Physiol Nutr Metab 40:769–781

    Article  CAS  PubMed  Google Scholar 

  • Negi PS, Jayaprakash GK, Jena BS (2003) Antioxidant and antimutagenic activities of pomegranate peel extracts. Food Chem 80:393–397

    Article  CAS  Google Scholar 

  • Oboh G, Agunloye OM, Adefegha SA, Akinyemi AJ, Ademiluyi AO (2015) Caffeic and chlorogenic acids inhibit key enzymes linked to type-2 diabetes (in vitro): a comparative study. J Basic Clin Physiol Pharmacol 26:165–170

    Article  CAS  PubMed  Google Scholar 

  • Ota A, Abramovic H, Abram V, Poklar UN (2011) Interactions of p-coumaric, caffeic and ferulic acids and their styrenes with model lipid membranes. Food Chem 125:1256–1261

    Article  CAS  Google Scholar 

  • Oyaizu M (1986) Studies on products of browning reactions: antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr Diet 44:307–315

    Article  CAS  Google Scholar 

  • Pan WB, Wei LM, Wei LL, Wu YC (2006) Chemical constituents of Tupistra chinensis rhizomes. Chem Pharm Bull 54:954–958

    Article  CAS  PubMed  Google Scholar 

  • Pan ZH, Li Y, Liu JL, Ning DS, Li DP, Wu XD, Wen YX (2012) A cytotoxic cardenolide and a saponin from the rhizomes of Tupistra chinensis. Fitoterapia 83:1489–1493

    Article  CAS  PubMed  Google Scholar 

  • Paphitou NI (2013) Antimicrobial resistance: action to combat the rising microbial challenges. Int J Antimicrob Agent 42:S25–S28

    Article  CAS  Google Scholar 

  • Pereira FD, Cazarolli LH, Lavado C, Mengatto V, Figueiredo MS, Guedes A, Pizzolatti MG, Silva FR (2011) Effects of flavonoids on α-glucosidase activity: potential targets for glucose homeostasis. Nutrition 27:1161–1167

    Article  PubMed  CAS  Google Scholar 

  • Rios JL, Recio MC (2005) Medicinal plants and antimicrobial activity. J Ethnopharmacol 4:80–100

    Article  CAS  Google Scholar 

  • Rizvi SI, Zaid MA, Anis R, Mishra N (2005) Protective role of tea catechins against oxidation-induced damage of type 2 diabetic erythrocytes. Clin Exp Pharmacol Physiol 32:70–75

    Article  PubMed  Google Scholar 

  • Rubilar M, Jara C, Poo Y, Acevedo F, Gutierrez C, Sineiro J, Shene C (2011) Extracts of Maqui (Aristotelia chilensis) and Murta (Ugni molinae Turcz.): sources of antioxidant compounds and α-glucosidase/α-amylase inhibitors. J Agric Food Chem 59:1630–1637

    Article  CAS  PubMed  Google Scholar 

  • Safer AM, Al-Nughamish AJ (1999) Hepatotoxicity induced by the antioxidant food additive butylated hydroxytoluene (BHT) in rats: an electron microscopical study. Histol Histopathol 14:391–406

    CAS  PubMed  Google Scholar 

  • Semaming Y, Kukongviriyapan U, Kongyingyoes B, Thukhammee W, Pannangpetch P (2015) Protocatechuic acid restores vascular responses in rats with chronic diabetes induced by streptozotocin. Phytother Res 30:227–233

    Article  PubMed  CAS  Google Scholar 

  • Sineiro J, Domínguez H, Nunez MJ, Lema JM (1996) Ethanol extraction of polyphenols in an immersion extractor. Effect of pulsing flow. J Am Oil Chem Soc 73:1121–1125

    Article  CAS  Google Scholar 

  • Singh R, Parihar P, Singh S, Mishra RK, Singh VP, Prasad SM (2017) Reactive oxygen species signaling and stomatal movement: current updates and future perspectives. Redox Biol 11:213–218

    Article  PubMed  CAS  Google Scholar 

  • Singleton VL, Rossi JA Jr (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  • Song X, Li Y, Zhang D, Jiang Y, Wang W, Song B, Tang Z, Cui J, Yue Z (2015) Two new spirostanol saponins from the roots and rhizomes of Tupistra chinensis. Phytochem Lett 13:6–10

    Article  CAS  Google Scholar 

  • SPSS (2011) IBM SPSS statistics base 20. SPSS Inc., Chicago

    Google Scholar 

  • Thaipong K, Boonprakob U, Crosby K, Cisneros-Zevallos L, Hawkins Byrne D (2006) Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J Food Compos Anal 19:669–675

    Article  CAS  Google Scholar 

  • Verma S, Nath LK (2016) Analytical standards for the flowers of Tupistra Nutans Wall. a rare medicinal plant of Sikkim Himalayan Region. Pharm Lett 8:48–56

    CAS  Google Scholar 

  • Vilioglu YS, Mazza G, Gao L, Oomah BD (1998) Antioxidant activity and total phenolics in selected fruits, vegetables and grain products. J Agric Food Chem 46:4113–4117

    Article  Google Scholar 

  • Wongsa P, Chaiwarit J, Zamaludien A (2012) In vitro screening of phenolic compounds, potential inhibition against α-amylase and α-glucosidase of culinary herbs in Thailand. Food Chem 131:964–971

    Article  CAS  Google Scholar 

  • Xiang J, Apea-Bah F, Ndolo VU, Katundu MC, Beta T (2019) Profile of phenolic compounds and antioxidant activity of finger millet varieties. Food Chem 275:361–368

    Article  CAS  PubMed  Google Scholar 

  • Xing Q, Kadota S, Tadata T, Namba T (1996) Antioxidant effect of phenylethanoids from Cistanche deserticola. Biol Pharm Bull 19:1580–1585

    Article  Google Scholar 

  • Yang QX, Zhang YJ, Li HZ, Yang CR (2005) Polyhydroxylated steroidal constituents from the fresh rhizomes of Tupistra yunnanensis. Steroids 70:732–737

    Article  CAS  PubMed  Google Scholar 

  • Yonzone R, Rai S, Bhujel RB (2011) Genetic diversity of ethnobotanical and medicinal plants resources of Darjeeling district, West Engal, India. Int J Adv Pharm Res 3:713–729

    Google Scholar 

  • Zahin M, Aqil F, Ahmad I (2010) Broad spectrum antimutagenic activity of antioxidant active fraction of Punica granatum L. peel extract. Mutat Res 703:99–107

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the KU Research Professor program.

Author information

Authors and Affiliations

Authors

Contributions

BKG performed designing of experiment and writing of manuscript. CYY supervised the experiment. RC and D-HO performed the antimicrobial activities. S-HK and I-MC performed the phytochemical determination, analysis and editing of manuscript.

Corresponding author

Correspondence to Bimal Kumar Ghimire.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, IM., Chelliah, R., Oh, DH. et al. Tupistra nutans Wall. root extract, rich in phenolics, inhibits microbial growth and α-glucosidase activity, while demonstrating strong antioxidant potential. Braz. J. Bot 42, 383–397 (2019). https://doi.org/10.1007/s40415-019-00547-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-019-00547-w

Keywords

Navigation