Skip to main content

Advertisement

Log in

Facilitative effects of tree species on natural regeneration in an endangered biodiversity hotspot

  • Original Article
  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

Canopy species can act changing abundance, survival and spatial distribution of other species below. The present study investigated the potential of four native species from the Atlantic Forest (Bixa arborea Huber, Inga laurina (Sw.) Willd., Joannesia princeps Vell. and Senna multijuga var. verrucosa (Vogel) H.S. Irwin & R.C. Barneby) at two spacings (2 × 2 and 3 × 3 m) in facilitating natural regeneration in areas undergoing forest restoration in southeastern Brazil. Circular plots were established under the canopies of each individual of these species and in open areas. All regenerating tree species were counted and identified. Joannesia princeps and S. multijuga var. verrucosa supported a greater richness of species under their canopy compared to the control area, but did not differ from the other species. The richness of regenerating trees under Bixa arborea and Inga laurina canopy did not differ from the control area. A greater abundance of regenerating trees was found below Inga laurina, Joannesia princeps and S. multijuga var. verrucosa. Trees planted at 2 × 2 m spacing sheltered a greater richness of regenerating tree species than at 3 × 3 m spacing. The species Joannesia princeps and S. multijuga var. verrucosa and the use of 2 × 2 m spacing are therefore recommended for accelerating the natural succession of degraded areas. Knowledge of the best combinations of species and spacing schemes to use to restore Atlantic rain forest is valuable because this design can guide the structuring and composition of regenerated forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alday JG, Santana VM, Marrs RH, Martínez-Ruiz C (2014) Shrub-induced understory vegetation changes in reclaimed mine sites. Ecol Eng 73:691–698. doi:10.1016/j.ecoleng.2014.09.079

    Article  Google Scholar 

  • Alonso JM, Leles PSS, Ferreira LNF, Oliveira NSA (2015) Aporte de serapilheira em plantio de recomposição florestal em diferentes espaçamentos. Cienc Flor 25:1–11. doi:10.5902/1980509817439

    Google Scholar 

  • Aukema JE, Martinez del Rio C (2002) Variation in mistletoe seed deposition: effects of intra- and interespecific host characteristics. Ecography 25:139–144. doi:10.1034/j.1600-0587.2002.250202.x

    Article  Google Scholar 

  • Avendaño-Yáñez ML, Sánchez-Velásquez LR, Meave JA, Pineda-López MR (2014) Is facilitation a promising strategy for cloud forest restoration? Forest Ecol Manag 329:328–333. doi:10.1016/j.foreco.2014.01.051

    Article  Google Scholar 

  • Biaou SSH, Holmgren M, Sterck FJ, Mohren GMJ (2011) Stress-driven changes in the strength of facilitation on tree seedling establishment in West African woodlands. Biotropica 43:23–30. doi:10.1111/j.1744-7429.2010.00642.x

    Article  Google Scholar 

  • Botelho AS, Davide AC, Faria JMR (1996) Desenvolvimento inicial de seis espécies florestais nativas em dois sítios, na região sul de Minas Gerais. Cerne 2:4–10

    Google Scholar 

  • Bueno A, Llambí LD (2015) Facilitation and edge effects influence vegetation regeneration in old-fields at the tropical Andean forest line. Appl Veg Sci 18:613–623. doi:10.1111/avsc.12186

    Article  Google Scholar 

  • Burkle LA, Belote RT (2014) Soil mutualists modify priority effects on plant productivity, diversity, and composition. Appl Veg Sci 18:332–342. doi:10.1111/avsc.12149

    Article  Google Scholar 

  • Callaway RM (1995) Positive interactions among plants. Bot Rev 61:306–349. doi:10.1007/bf02912621

    Article  Google Scholar 

  • Carmo FMS, Lima e Borges EE, Takaki M (2007) Alelopatia de extratos aquosos de canela-sassafrás (Ocotea odorifera (Vell.) Rohwer). Acta Bot Bras 21:697–705. doi:10.1590/S0102-33062007000300016

    Article  Google Scholar 

  • Castro J, Zamora R, Hódar JA, Gómez JM (2002) Use of shrubs as nurse plants: a new technique for reforestation in Mediterranean mountains. Restor Ecol 10:297–305. doi:10.1046/j.1526-100X.2002.01022.x

    Article  Google Scholar 

  • Castro-Díez P, Langendoen T, Poorter L, López AS (2011) Predicting Acacia invasive success in South Africa on the basis of functional traits, native climatic niche and human use. Biodivers Conserv 20:2729–2743. doi:10.1007/s10531-011-0101-5

    Article  Google Scholar 

  • Daws MI, Pearson TRH, Burslem DFRP, Mullins CE, Dalling JW (2005) Effects of topographic position, leaf litter and seed size on seedling demography in a semi-deciduous tropical forest in Panama. Plant Ecol 179:93–105. doi:10.1007/s11258-004-5801-4

    Article  Google Scholar 

  • Duarte LS, dos-Santos MMG, Hartz SM, Pillar VD (2006) Role of nurse plants in Araucaria forest expansion over grassland in south Brazil. Austral Ecol 31:520–528. doi:10.1111/j.1442-9993.2006.01602.x

    Article  Google Scholar 

  • Facelli JM, Pickett STA (1991) Plant litter: light interception and effects on an old field plant community. Ecology 72:1024–1031. doi:10.2307/1940602

    Article  Google Scholar 

  • Ferreira WC, Botelho AS, Davide AC, Faria JMR (2009) Estabelecimento de mata ciliar às margens do reservatório da Usina Hidrelétrica de Camargos, MG. Cienc Florest 19:69–81. doi:10.5902/19805098421

    Google Scholar 

  • Foré SA, Vankat JL, Schaefer RL (1997) Temporal variation in the woody understory of an old-growth Fagus-Acer forest and implications for overstory recruitment. J Veg Sci 8:607–614. doi:10.2307/3237364

    Article  Google Scholar 

  • Franco AC, Nobel OS (1989) Effect of nurse plants on the microhabitat and growth of cacti. J Ecol 77:870–886

    Article  Google Scholar 

  • Gandolfi S (2003) Regimes de luz em florestas estacionais semideciduais e suas consequências. In: Sales VC (ed) Ecossistemas brasileiros: manejo e conservação. Expressão Gráfica e Editora, Fortaleza, pp 305–311

    Google Scholar 

  • Gandolfi S, Joly CA, Rodrigues RR (2007) Permeability–impermeability: canopy trees as biodiversity filters. Sci Agric 64:433–438. doi:10.1590/S0103-90162007000400015

    Article  Google Scholar 

  • Gómez-Aparicio L, Zamora R, Gómez JM, Hódar JA, Castro J, Baraza E (2004) Applying plant facilitation to forest restoration: a meta-analysis of the use of shrubs as nurse plants. Ecol Appl 14:1128–1138. doi:10.1890/03-5084

    Article  Google Scholar 

  • IBGE (2012) Manual técnico da vegetação brasileira. Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro

    Google Scholar 

  • Koorem K, Moora M (2010) Positive association between understory species richness and a dominant shrub species (Corylus avellana) in a boreonemoral spruce forest. Forest Ecol Manag 260:1407–1413. doi:10.1016/j.foreco.2010.07.043

    Article  Google Scholar 

  • Leal F, Clavijo CM (2010) Annatto: a natural dye from the tropics. Chron Horticult 50:34–36

    Google Scholar 

  • Lima RAF, Gandolfi S (2009) Structure of the herb stratum under different ligh regimes in the Submontane Atlantic Rain Forest. Braz J Biol 69:289–296. doi:10.1590/S1519-69842009000200008

    Article  CAS  PubMed  Google Scholar 

  • Lima RAF, Mori DP, Pitta G, Melito MO, Bello C, Magnago LF, Zwiener VP, Saraiva DD, Marques MCM, Oliveira AA, Prado PI (2015) How much do we know about the endangered Atlantic Forest? Reviewing nearly 70 years of information on tree community surveys. Biodivers Conserv 24:2135–2148. doi:10.1007/s10531-015-0953-1

    Article  Google Scholar 

  • Liu N, Ren H, Yuan S, Guo Q, Yang L (2013) Testing the stress-gradient hypothesis during the restoration of tropical degraded land using the shrub Rhodomyrtus tomentosa as a nurse plant. Restor Ecol 21:578–584. doi:10.1111/j.1526-100X.2012.00937.x

    Article  Google Scholar 

  • Liu N, Zhu W, Sun Z, Yang L, Yuan S, Ren H (2014) Canopy size dependent facilitations from the native shrub Rhodomyrtus tomentosa to the early establishment of native trees Castanopsis fissa and Syzygium hancei in tropical china. Restor Ecol 22:509–516. doi:10.1111/rec.12094

    Article  Google Scholar 

  • Massad TJ, Chambers JQ, Rolim SG, Jesus RM, Dyer LA (2011) Restoration of pasture to forest in Brazil’s Mata Atlântica: the roles of herbivory, seedling defenses, and plot design in reforestation. Restor Ecol 19:257–267. doi:10.1111/j.1526-100X.2010.00683.x

    Article  Google Scholar 

  • Mejía-Domínguez NR, Meave JÁ, Díaz-Ávalos C, González EJ (2011) Individual canopy-tree species effects on their immediate understory microsite and sapling community dynamics. Biotropica 43:572–581. doi:10.1111/j.1744-7429.2010.00739.x

    Article  Google Scholar 

  • Melo ACG, Daronco C, Ré DS, Durigan G (2015) Atributos de espécies arbóreas e a facilitação da regeneração natural em plantio heterogêneo de mata ciliar. Sci For 43:333–344

    Google Scholar 

  • Mihoč MAK, Giménez-Benavides L, Pescador DS, Sánchez AM, Cavieres LA, Escudero A (2016) Soil under nurse plants is always better than outside: a survey on soil amelioration by a complete guild of nurse plants across a long environmental gradient. Plant Soil 408:31–41. doi:10.1007/s11104-016-2908-z

    Article  Google Scholar 

  • Molina-Montenegro MA, Oses R, Atala C, Torres-Díaz C, Bolados G, León-Lobos P (2016) Nurse effect and soil microorganisms are key to improve the establishment of native plants in a semiarid community. J Arid Environ 126:54–61. doi:10.1016/j.jaridenv.2015.10.016

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. doi:10.1038/35002501

    Article  CAS  PubMed  Google Scholar 

  • Nobel OS (1980) Morphology, nurse plants, and minimum apical temperatures for young Carnegiea gigantea. Bot Gaz 141:188–191. doi:10.1086/337142

    Article  Google Scholar 

  • Oberlaender ER (2006) Fenologia de Senna macranthera (Collad.) Irwin & Barneby e Senna multijuga (Rich.) Irwin & Barneby no Parque Nacional da Serra dos Órgãos e na área urbana de Teresópolis—RJ. Dissertação de Mestrado, Universidade Federal Rural do Rio de Janeiro, Seropédica

  • Padilla FM, Pugnaire FI (2006) The role of nurse plants in the restoration of degraded environments. Front Ecol Environ 4:196–202. doi:10.1890/1540-9295(2006)004[0196:TRONPI]2.0.CO;2

    Article  Google Scholar 

  • Pedroza ES, Silva LB, Sampaio S, Oliveira VPS (2011) Recuperação ambiental de cava com espécies nativas florestais no norte fluminense. Boletim Observatório Ambiental Alberto Ribeiro Lamego 5:189–198. doi:10.5935/2177-4560.20110012

    Article  Google Scholar 

  • Piña-Rodrigues FCM, Lopes BM (2001) Potencial alelopático de Mimosa caesalpinaefolia Benth sobre sementes de Tabebuia alba (Cham.) Sandw. Flor Amb 8:130–136

    Google Scholar 

  • Pueyo Y, Moret-Fernández D, Arroyo AI, Frutos A, Kéfi S, Saiz H, Charte R, Giner ML, Alados CL (2016) Plant nurse effects rely on combined hydrological and ecological components in a semiarid ecosystem. Ecosphere 7:1–19. doi:10.1002/ecs2.1514

    Article  Google Scholar 

  • Quinn G, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Ramírez LA, Rada F, Llambí LD (2015) Linking patterns and processes through ecosystem engineering: effects of shrubs on microhabitat and water status of associated plants in the high tropical Andes. Plant Ecol 216:213–225. doi:10.1007/s11258-014-0429-5

    Article  Google Scholar 

  • Rejmánek M, Richardson DM (1996) What attributes make some plant species more invasive? Ecology 77:1655–1661. doi:10.2307/2265768

    Article  Google Scholar 

  • Ren H, Yang L, Liu N (2008) Nurse plant theory and its application in ecological restoration in lower subtropics of China. Prog Nat Sci 18:137–142. doi:10.1016/j.pnsc.2007.07.008

    Article  Google Scholar 

  • Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153. doi:10.1016/j.biocon.2009.02.021

    Article  Google Scholar 

  • Rolim SG, Jesus RM, Nascimento HEM, Couto HTZ, Chambers JQ (2005) Biomass change in an Atlantic tropical moist forest: the ENSO effect in permanent sample plots over a 22-year period. Oecologia 142:238–246. doi:10.1007/s00442-004-1717-x

    Article  PubMed  Google Scholar 

  • Rolim SG, Jesus RM, Nascimento HEM (2007) Restauração experimental de uma pastagem na Mata Atlântica através de semeadura direta. In: Menezes LFT, Pires FR, Pereira OJ (eds) Ecossistemas costeiros de Espírito Santo: conservação e restauração. Edufes, Vitória, pp 269–290

    Google Scholar 

  • Sá D, Lopes SF, Prado Júnior JA, Schiavini I, Vale VS, Oliveira AP, Dias-Neto OC, Gusson AE (2012) Estrutura e grupos ecológicos de um fragmento de floresta estacional semidecidual no Triângulo Mineiro, Brasil. Caminhos Geografia 13:89–101

    Google Scholar 

  • Sakai A, Visaratana T, Vacharangkura T, Thai-ngam R, Tanaka N, Ishizuka M, Nakamura S (2009) Effect of species and spacing of fast-growing nurse trees on growth of an indigenous tree, Hopea odorata Roxb., in northeast Thailand. Forest Ecol Manag 257:644–652. doi:10.1016/j.foreco.2008.09.048

    Article  Google Scholar 

  • Sampaio MTF, Polo M, Barbosa W (2012) Estudo do crescimento de espécies de árvores semidecíduas em uma área ciliar revegetada. Rev Arvore 36:879–885. doi:10.1590/S0100-67622012000500010

    Article  Google Scholar 

  • Sánchez-Velásquez LR, Quinteiro-Gradilla S, Aragón-Cruz F, Pineda-López MR (2004) Nurse for Brosimum alicastrum reintroduction in secondary tropical dry forest. Forest Ecol Manag 198:401–404. doi:10.1016/j.foreco.2004.02.064

    Article  Google Scholar 

  • Scowcroft PG, Yeh JT (2013) Passive restoration augments active restoration in deforested landscapes: the role of root suckering adjacent to planted stands of Acacia koa. Forest Ecol Manag 305:138–145. doi:10.1016/j.foreco.2013.05.027

    Article  Google Scholar 

  • Souza FM, Gandolfi S, Rodrigues RR (2014) Deciduousness influences the understory community in a semideciduous tropical forest. Biotropica 46:512–515. doi:10.1111/btp.12137

    Article  Google Scholar 

  • Souza FM, Gandolfi S, Rodrigues RR (2015) Species-specific associations between overstory and understory tree species in a semideciduous tropical forest. Acta Bot Bras 29:73–81. doi:10.1590/0102-33062014abb3642

    Article  Google Scholar 

  • Vázquez-Yanes C, Orozco-Segovia A (1992) Effects of litter from a tropical rainforest on tree seed germination and establishment under controlled conditions. Tree Physiol 11:392–400. doi:10.1093/treephys/11.4.391

    Article  Google Scholar 

  • Vázquez-Yanes C, Orozco-Segovia A, Rincón E, Sanchez-Coronado ME, Huante P, Toledo JR, Barradas VL (1990) Light beneath the litter in a tropical forest: effect on seed germination. Ecology 71:1952–1958. doi:10.2307/1937603

    Article  Google Scholar 

  • Viani RAG, Durigan G, Melo ACG (2010) A regeneração natural sob plantações florestais: desertos verdes ou redutos de biodiversidade? Cienc Florest 20:533–552. doi:10.5902/198050982067

    Google Scholar 

  • Vieira DCM, Gandolfi S (2006) Chuva de sementes e regeneração natural sob três espécies arbóreas em uma floresta em processo de restauração. Rev Bras Bot 29:541–554. doi:10.1590/S0100-84042006000400004

    Article  Google Scholar 

  • Vieira ICG, Uhl C, Nepstad D (1994) The role of the shrub Cordia multispicata Cham. as a succession facilitator in an abandoned pasture, Paragominas, Amazonia. Vegetatio 11:91–99. doi:10.1007/BF00044863

    Google Scholar 

  • Villa EB, Pereira MG, Alonso JM, Beutler SJ, Leles PSS (2016) Aporte de serapilheira e nutrientes em área de restauração florestal com diferentes espaçamentos de plantio. Flor Amb 23:90–99. doi:10.1590/2179-087.067513

    Article  Google Scholar 

  • Zwiener VP, Cardoso FCG, Padial AA, Marques MCM (2014) Disentangling the effects of facilitation on restoration of the Atlantic forest. Basic Appl Ecol 15:34–41. doi:10.1016/j.baae.2013.11.005

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the Reserva Natural Vale for logistical support and the support of the Dean of Research from Universidade Federal de Minas Gerais (UFMG). The first author would like to thank the Fundação de Amparo à Pesquisa e Inovação do Espírito Santo (the Espirito Santo Foundation for Research and Innovation) (Fapes) for the awarding of a Master’s grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiani Spadeto.

Electronic supplementary material

Below is the link to the electronic supplementary material.

40415_2017_408_MOESM1_ESM.pdf

Online Resource 1 List of species of natural regeneration and their total abundances sampled in treatments in the Reserva Natural Vale, ES, Southeastern Brazil. 1 (PDF 279 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spadeto, C., Wilson Fernandes, G., Negreiros, D. et al. Facilitative effects of tree species on natural regeneration in an endangered biodiversity hotspot. Braz. J. Bot 40, 943–950 (2017). https://doi.org/10.1007/s40415-017-0408-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-017-0408-x

Keywords

Navigation