Skip to main content
Log in

Direct and cross-recognition of lichenized Trebouxia Puymaly (Chlorophyta, Trebouxiophyceae) and Nostoc Vaucher ex Bornet (Cyanobacteria, Cyanophyceae) by their homologous and heterologous fungal lectins

  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

In this study, we have used affinity chromatography to purify the lectins from a chlorolichen, Evernia prunastri (L.) Ach., and a cyanolichen, Peltigera canina (Ach.) Schard. These species secrete lectins that display arginase activity in addition to their role as recognition proteins. We found that fluorescently labeled lectins display efficient binding to their ligands on the cell wall. Binding was stronger when the lectin reacted with the producing (homologous) photobiont (alga or cyanobacteria) than with the nonproducing (heterologous) species used throughout the study. To address the specificity of lectin binding, we performed desorption experiments of cell-bound lectins with different hexoses. We found that Evernia lectin is only desorbed by galactose, consistent with its specific binding to a single polygalactosylated ligand. Conversely, Peltigera lectin is desorbed not only by galactose, but also by mannose. This indicates that Peltigera lectin recognizes not only α-d-galactose-containing ligands, but also ligands containing α-d-mannose moieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Figs. 3–6
Fig. 7–10
Fig. 11–14
Fig. 15–18
Fig. 19–24

Similar content being viewed by others

References

  • Aisaka K, Uwajima T, Terada O (1984) Kinetic properties of galactose oxidase from Gibberella fujikuroi. Agric Biol Chem 48:1425–1431

    CAS  Google Scholar 

  • Bergman B, Rai AN, Johanson C, Söderbäck E (1993) Cyanobacterial-plant symbioses. Symbiosis 14:61–81

    Google Scholar 

  • Bubrick P (1988) Effects of symbiosis on the photobionts. In: Galun M (ed) Handbook of lichenology, vol 2. CRC Press, Boca Raton, pp 130–133

    Google Scholar 

  • Bubrick P, Galun M (1980) Proteins from the lichen Xanthoria parietina which bind to phycobiont cell walls. Correlation between binding patterns and cell wall cytochemistry. Protoplasma 104:167–173

    Article  CAS  Google Scholar 

  • Caffaro SV, Mateos JL, Vicente C (1996) Changes in the activity of an enzymatic marker bound to plasmalemma during the photoperiodic flowering induction of soybean. Phyton (Austria) 36:9–28

    CAS  Google Scholar 

  • Conway EJ (1962) Microdiffusion analysis and volumetric error. Crosby Loockwood, London

    Google Scholar 

  • Cuellar M, Quilhot W, Rubio C, Soto C, Espinoza L, Carrasco H (2008) Phenolics, depsides and triterpenes from the chilean lichen Pseudocyphellaria nudata (Zahlbr.) D.J. Galloway. J Chil Chem Soc 53:1624–1625

    Article  CAS  Google Scholar 

  • Derewenda Z, Yariv J, Helliwell JR, Kaeb AJ, Dodson EJ, Papiz MZ, Wan T, Campbell J (1989) The structure of the saccharide binding site of concanavalin A. EMBO J 8:2189–2193

    CAS  PubMed  PubMed Central  Google Scholar 

  • Díaz EM, Sacristán M, Legaz ME, Vicente C (2009) Isolation and characterization of a cyanobacterium binding protein and its cell wall ligand in the lichen Peltigera canina. Plant Signal Behav 4:598–603

    Article  PubMed  PubMed Central  Google Scholar 

  • Díaz EM, Vicente-Manzanares M, Sacristán M, Vicente C, Legaz ME (2011) Fungal lectin of Peltigera canina induces chemotropism of compatible Nostoc cells by constriction-relaxation pulses of cyanobiont cytoskeleton. Plant Signal Behav 6:1525–1536

    Article  PubMed  PubMed Central  Google Scholar 

  • Fontaniella B, Molina MC, Vicente C (2000) An improved method for the separation of lichen symbionts. Phyton (Austria) 40:323–328

    Google Scholar 

  • Fontaniella B, Millanes AM, Vicente C, Legaz ME (2004) Concanavalin A binds to a mannose-containing ligand in the cell wall of some lichen phycobionts. Plant Physiol Biochem 42:773–779

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb M, Charko M (1987) Silver staining of native and denatured eukaryotic DNA in agarose gels. Anal Biochem 165:33–37

    Article  CAS  PubMed  Google Scholar 

  • Honda NK, Vilegas W (1998) A química dos liquens. Quím Nova 6:110–125

    Google Scholar 

  • Kardish N, Silberstein L, Flemminger G, Galun M (1991) Lectin from the lichen Nephroma laevigatum. Localization and function. Symbiosis 11:47–62

    CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277:680–685

    Article  Google Scholar 

  • Legaz ME, Vicente C (1982) Two forms of arginase in Evernia prunastri. Biochem Biophys Res Commun 104:1441–1446

    Article  CAS  PubMed  Google Scholar 

  • Legaz ME, Fontaniella B, Millanes AM, Vicente C (2004) Secreted arginases from phylogenetically far-related lichen species act as cross-recognition factors for two different algal cells. Eur J Cell Biol 83:1–12

    Article  Google Scholar 

  • Lehr H, Fleminger G, Galun M (1995) Lectin from the lichen Peltigera membranacea. Characterization and function. Symbiosis 18:1–13

    CAS  Google Scholar 

  • Lehr H, Galun M, Ott S, Jahns HM, Fleminger G (2000) Cephalodia of the lichen Peltigera aphthosa. Specific recognition of the compatible photobiont. Symbiosis 29:357–365

    Google Scholar 

  • Lockhart CM, Rowell P, Stewart WDP (1978) Phytohaemagglutinins from the nitrogen-fixing lichens Peltigera canina and P. polydactyla. FEMS Microbiol Lett 3:127–130

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Manoharan SS, Miao VPW, Andrésson OS (2012) LEC-2, a highly variable lectin in the lichen Peltigera membranacea. Symbiosis 58:91–98

    Article  PubMed  PubMed Central  Google Scholar 

  • Max M, Peveling E (1983) Surface ligands in lichen symbionts visualized by fluorescence microscopy after use of lectins. Protoplasma 114:52–61

    Google Scholar 

  • Meeks JC, Elhai J (2002) Regulation of cellular differentiation in filamentous cyanobacteria in free-living and plant-associated symbiotic growth states. Microbiol Mol Biol Rev 66:94–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao VPW, Manoharan SS, Snæbjarnarson V, Andrésson OS (2012) Expression of lec-1, a mycobiont gene encoding a galectin-like protein in the lichen Peltigera membranacea. Symbiosis 57:23–31

    Article  CAS  Google Scholar 

  • Molina MC, Vicente C (1995) Corelationships between enzymatic activity of lectins, putrescine content and chloroplast damage in Xanthoria parietina phycobionts. Cell Adhes Commun 3:1–12

    Article  CAS  PubMed  Google Scholar 

  • Molina MC, Muñiz E, Vicente C (1993) Enzymatic activities of algal-binding protein and its algal cell wall receptor in the lichen Xanthoria parietina. An approach to the parasitic basis of mutualism. Plant Physiol Biochem 31:131–142

    CAS  Google Scholar 

  • Montfort W, Villafranca JE, Monzing AF, Ernst SR, Katzin B, Rutenberg E, Xoung NH, Hamlin R, Robertus JD (1987) The three dimensional structure of ricin at 2.8 Å. J Biol Chem 262:5398–5403

    CAS  PubMed  Google Scholar 

  • Paulsrud P, Rikkinen J, Lindblad P (2001) Field experiments on cyanobacterial specificity in Peltigera aphthosa. New Phytol 152:117–123

    Article  Google Scholar 

  • Pedrosa MM, Legaz ME (1995) Separation of arginase isoforms by capillary zone electrophoresis and electrofocusing in density gradient column. Electrophoresis 16:659–669

    Article  CAS  PubMed  Google Scholar 

  • Petit P (1982) Phytolectins from the nitrogen-fixing lichen Peltigera horizontalis: the binding pattern of primary protein extract. New Phytol 91:705–710

    Article  CAS  Google Scholar 

  • Petit P, Lallemant R, Savoye D (1983) Purified phytolectin from the lichen Peltigera canina var. canina which binds to the phycobiont cell walls and its use as cytochemical marker in situ. New Phytol 94:103–110

    Article  CAS  Google Scholar 

  • Planelles V, Legaz ME (1987) Purification and some proprieties of the secreted arginase of the lichen Evernia prunastri and its regulation by usnic acid. Plant Sci 51:9–16

    Article  CAS  Google Scholar 

  • Rai AN, Söderbäck E, Bergman B (2000) Cyanobacterium-plant symbioses. New Phytol 147:449–481

    Article  CAS  Google Scholar 

  • Rikkinen J (2002) Cyanolichens: an evolutionary overview. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbiosis. Kluwe Academic Publishing, Amsterdam, pp 31–72

    Google Scholar 

  • Sacristán M, Millanes AM, Legaz ME, Vicente C (2006) A lichen lectin specifically binds to the α-1,4-polygalactoside moiety of urease located in the cell wall of homologous algae. Plant Signal Behav 1:23–27

    Article  PubMed  PubMed Central  Google Scholar 

  • Shoham M, Yonath A, Sussmann JL, Moult J, Traub W, Kalb AJ (1979) Crystal structure of demetallized concanavalin A: the metal binding region. J Mol Biol 131:137–155

    Article  CAS  PubMed  Google Scholar 

  • Vivas M, Sacristán M, Legaz ME, Vicente C (2010) The cell recognition model in chlorolichens involving a fungal lectin binding to an algal ligand can be extended to cyanolichens. Plant Biol 12:615–621

    CAS  PubMed  Google Scholar 

  • Walters RR (1985) Ligands for mobilization. In: Dean PGD, Johnson WS, Middle FA (eds) Affinity chromatography: a practical approach. IRL Press, Oxford, pp 114–116

    Google Scholar 

  • Wastlhuber R, Loos E (1996) Differences between cultured and freshly isolated cyanobiont from Peltigera is their symbiosis-specific regulation of glucose carrier. Lichenologist 28:67–68

    Google Scholar 

  • Whittaker JW (2005) The radical chemistry of galactose oxidase. Arch Biochem Biophys 433:227–239

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported by a grant from the Ministerio de Ciencia e Innovación (Spain) BFU2009-11983. The authors thank Prof. Dr. Miguel Vicente-Manzanares for proofreading this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Vicente.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz, E.M., Cutrona, C., Sánchez-Elordi, E. et al. Direct and cross-recognition of lichenized Trebouxia Puymaly (Chlorophyta, Trebouxiophyceae) and Nostoc Vaucher ex Bornet (Cyanobacteria, Cyanophyceae) by their homologous and heterologous fungal lectins. Braz. J. Bot 39, 507–518 (2016). https://doi.org/10.1007/s40415-016-0268-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-016-0268-9

Keywords

Navigation