Skip to main content
Log in

Light acclimation in nursery: morphoanatomy and ecophysiology of seedlings of three light-demanding neotropical tree species

  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

Plants can acclimate to environmental changes by physiological and morphoanatomical responses. We aimed to evaluate the influence of high-light acclimation on the hardiness of neotropical tree species seedlings, through analysis of the gas exchange, morphology and anatomy of Aegiphila integrifolia (Jacq.) Moldenke, Guazuma ulmifolia Lam. and Heliocarpus popayanensis Kunth. Seedlings were grown in a shaded sector (40 % of photosynthetic photon flux density) of a nursery. After the growing period, part of the seedlings was kept in the shaded sector (shade) and another part was transferred to full sunlight (sun). The seedlings remained in the respective sectors for 168 days. H. popayanensis sun seedlings presented increases in net photosynthesis together with reduced stomatal conductance and transpiration, resulting in higher water-use efficiency. In contrast, the transfer to full sunlight led to a decrease in net photosynthesis of A. integrifolia and G. ulmifolia seedlings, but this parameter was recovered after development of new leaves in the sun. The hardening process under high irradiation levels induced morphoanatomical responses in all species, such as increased palisade parenchyma thickness and lower total leaf area (all species), higher stomatal density (A. integrifolia and G. ulmifolia), higher biomass allocation to roots (H. popayanensis and G. ulmifolia), and higher Dickson quality index (H. popayanensis). Thus, when submitted to a high radiation environment, the physiological and morphoanatomical acclimation increased seedlings hardiness and, in consequence, the probability of survival after planting in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aleric KM, Kirkman K (2005) Growth and photosynthetic responses of the federally endangered shrub, Lindera melissifolia (Lauraceae), to varied light environments. Am J Bot 92:682–689

    Article  PubMed  Google Scholar 

  • Boardman NK (1977) Comparative photosynthesis of sun and shade plants. Annu Rev Plant Physiol 28:355–377

    Article  CAS  Google Scholar 

  • Brodribb TJ, Holbrook NM (2006) Declining hydraulic efficiency as transpiring leaves desiccate: two types of response. Plant Cell Environ 29:2205–2215

    Article  CAS  PubMed  Google Scholar 

  • Campos MAA, Uchida T (2002) Influência do sombreamento no crescimento de mudas de três espécies amazônicas. Pesqui Agropecu Bras 37:281–288

    Article  Google Scholar 

  • Cano FJ, Sánchez-Gómez D, Gascó A, Rodríguez-Calcerrada J, Gil L, Warren CR, Aranda I (2011) Light acclimation at the end of the growing season in two broadleaved oak species. Photosynthetica 49:581–592

    Article  Google Scholar 

  • Chabot BF, Hicks DJ (1982) The ecology of leaf life spans. Annu Rev Ecol Syst 13:229–259

    Article  Google Scholar 

  • Chazdon RL, Pearcy RW, Lee DW, Fetcher N (1996) Photosynthetic responses of tropical forest plants to contrasting light environments. In: Mulkey SS, Chazdon RL, Smith AP (eds) Tropical forest plant ecophysiology. Chapman and Hall, New York, pp 5–55

    Chapter  Google Scholar 

  • Claussen JW (1996) Acclimation abilities of three tropical rainforest seedlings to an increase in light intensity. For Ecol Manag 80:245–255

    Article  Google Scholar 

  • Cortina J, Vilagrosa A, Trubat R (2013) The role of nutrients for improving seedling quality in drylands. New For 44:719–732

    Article  Google Scholar 

  • Cuzzol GRF, Milanez CRD (2012) Morphological and physiological adjustments in juvenile tropical trees under contrasting sunlight irradiance. In: Najafpour MM (ed) Advances in photosynthesis—fundamental aspects. InTech, Rijeka, pp 501–519

    Google Scholar 

  • Delpérée C, Kinet JM, Lutts S (2003) Low irradiance modifies the effect of water stress on survival and growth-related parameters during the early developmental stages of buckwheat (Fagopyrum esculentum). Physiol Plant 119:211–220

    Article  Google Scholar 

  • Demmig-Adams B, Adams WW (1992) Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol 43:599–626

    Article  CAS  Google Scholar 

  • Dickson A, Leaf AL, Hosner JF (1960) Quality appraisal of white spruce and white pine seedling stock in nurseries. For Chron 36:10–13

    Article  Google Scholar 

  • Endres L, Câmara CA, Ferreira VM, Silva JV (2010) Morphological and photosynthetic alterations in the yellow-ipe, Tabebuia chrysotricha (Mart. ex DC.) Standl., under nursery shading and gas exchange after being transferred to full sunlight. Agrofor Syst 78:287–298. doi:10.1007/s10457-009-9235-9

    Article  Google Scholar 

  • Evans JR, Poorter H (2001) Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant Cell Environ 24:755–767

    Article  CAS  Google Scholar 

  • Ferraz AV, Engel VL (2011) Efeito do tamanho de tubetes na qualidade de mudas de jatobá (Hymenaea courbaril L. var. stilbocarpa (Hayne) Lee et Lang.), ipê-amarelo (Tabebuia chrysotricha (Mart. ex Dc.) Sandl.) e guarucaia (Parapiptadenia rigida (Benth.) Brenan). Rev Árvore 35:413–423

    Article  Google Scholar 

  • Ferreira OGL, Rossi FD, Andrighetto C (2008) DDA: software para determinação de área foliar, índice de área foliar e área de olho de lombo versão 1.2. Santo Augusto

  • Fonseca ÉP, Valéri SV, Miglioranza É, Fonseca NAN, Couto L (2002) Padrão de qualidade de mudas de Trema micrantha (L.) Blume, produzidas sob diferentes períodos de sombreamento. Rev Árvore 26:515–523

  • Freitas GA, Vaz-de-Melo A, Pereira MAB, Andrade CAO, Lucena GN, Silva RR (2012) Influência do sombreamento na qualidade de mudas de Sclerolobium paniculatum Vogel para recuperação de área degradada. J Biotechnol Biodivers 3:5–12

    Google Scholar 

  • Givnish TJ (1988) Adaptation to sun and shade: a whole plant perspective. Aust J Plant Physiol 15:63–92

    Article  Google Scholar 

  • Gonçalves JFC, Barreto DCS, Santos-Junior UM, Fernandes AV, Sampaio PTB, Buckeridge MS (2005) Growth, photosynthesis and stress indicators in young rosewood plants (Aniba rosaeodora Ducke) under different light intensities. Braz J Plant Physiol 17:325–334

    Google Scholar 

  • Gonçalves ER, Souza FC, Santos LN, Silva JV, Ferreira VM, Endres L (2013) Morphological and photosynthetic adaptations of Tabebuia aurea seedlings in the nursery. Rev Bras Eng Agríc Ambient 17:1201–1209

    Article  Google Scholar 

  • Gyimah R, Nakao T (2007) Early growth and photosynthetic responses to light in seedlings of three tropical species differing in successional strategies. New Forest 33:217–236. doi:10.1007/s11056-006-9028-1

    Article  Google Scholar 

  • Hanba YT, Kogami H, Terashima I (2002) The effect of growth irradiance on leaf anatomy and photosynthesis in Acer species differing in light demand. Plant Cell Environ 25:1021–1030

    Article  Google Scholar 

  • Ivancich HS, Lencinas MV, Pastur GJM, Esteban RMS, Hernández L, Lidstrom I (2012) Foliar anatomical and morphological variation in Nothofagus pumilio seedlings under controlled irradiance and soil moisture levels. Tree Physiol 32:554–564. doi:10.1093/treephys/tps024

    Article  PubMed  Google Scholar 

  • Jacobs DF, Salifu KF, Seifert JR (2005) Relative contribution of initial root and shoot morphology in predicting field performance of hardwood seedlings. New For 30:235–251. doi:10.1007/s11056-005-5419-y

    Article  Google Scholar 

  • Johansen DA (1940) Plant microtechnique. McGraw- Hill, New York

    Google Scholar 

  • Jordan GJ, Dillon RA, Weston PH (2005) Solar radiation as a factor in the evolution of scleromorphic leaf anatomy in Proteaceae. Am J Bot 92:789–796

    Article  PubMed  Google Scholar 

  • Kitao M, Lei TT, Koike T, Tobita H, Maruyama Y (2000) Susceptibility to photoinhibition of three deciduous broadleaf tree species with different successional traits raised under various light regimes. Plant Cell Environ 23:81–89

    Article  Google Scholar 

  • Krause GH, Koroleva OY, Dalling JW, Winter K (2001) Acclimation of tropical tree seedlings to excessive light in simulated tree-fall gaps. Plant Cell Environ 24:1345–1352

    Article  CAS  Google Scholar 

  • Lee DW, Oberbauer SF, Johnson P, Krishnapilay B, Mansor M, Mohamed H, Yap SK (2000) Effects of irradiance and spectral quality on leaf structure and function in seedlings of two southeast Asian Hopea (Dipterocarpaceae) species. Am J Bot 87:447–455

    Article  CAS  PubMed  Google Scholar 

  • Leles PSS, Lisboa AC, Oliveira Neto SN, Grugiki MA, Ferreira MA (2006) Qualidade de mudas de quatro espécies florestais produzidas em diferentes tubetes. Floresta Ambient 13:69–78

    Google Scholar 

  • Long SP, Humphries S, Falkowski PG (1994) Photoinhibition of photosynthesis in nature. Annu Rev Plant Physiol Plant Mol Biol 45:633–662

    Article  CAS  Google Scholar 

  • Macêdo NA (1997) Manual de Técnicas em Histologia Vegetal. Editora UEFS, Feira de Santana

    Google Scholar 

  • Martínez-Pastur G, Lencinas MV, Peri PL, Arena M (2007) Photosynthetic plasticity of Nothofagus pumilio seedlings to light intensity and soil moisture. For Ecol Manag 243:274–282

    Article  Google Scholar 

  • Matsuki S, Ogawa K, Tanaka A, Hara T (2003) Morphological and photosynthetic responses of Quercus crispula seedlings to high-light conditions. Tree Physiol 23:769–775

    Article  PubMed  Google Scholar 

  • Mielke MS, Schaffer B (2010) Photosynthetic and growth responses of Eugenia uniflora L. seedlings to soil flooding and light intensity. Environ Exp Bot 68:113–121. doi:10.1016/j.envexpbot.2009.11.007

    Article  CAS  Google Scholar 

  • Moraes GABK, Chaves ARM, Martins SCV, Barros RS, DaMatta FM (2010) Why is it better to produce coffee seedlings in full sunlight than in the shade? A morphophysiological approach. Photosynthetica 48:199–207

    Article  Google Scholar 

  • Mulkey SS, Pearcy RW (1992) Interactions between acclimation and photoinhibition of photosynthesis of a tropical forest understory herb, Alocasia macrorrhiza, during simulated canopy gap formation. Funct Ecol 6:719–729

    Article  Google Scholar 

  • Oguchi R, Hikosaka K, Hirose T (2005) Leaf anatomy as a constraint for photosynthetic acclimation: differential responses in leaf anatomy to increasing growth irradiance among three deciduous trees. Plant Cell Environ 28:916–927

    Article  Google Scholar 

  • Oguchi R, Hikosaka K, Hirura T (2006) Leaf anatomy and light acclimation in woody seedlings after gap formation in a cool-temperate deciduous forest. Oecologia 149:571–582. doi:10.1007/s00442-006-0485-1

    Article  CAS  PubMed  Google Scholar 

  • Poorter H (1999) Growth responses of 15 rain-forest tree species to a light gradient: the relative importance of morphological and physiological traits. Funct Ecol 13:396–410

    Article  Google Scholar 

  • Poorter L (2001) Light-dependent changes in biomass allocation and their importance for growth of rain forest tree species. Funct Ecol 15:113–123

    Article  Google Scholar 

  • Poorter H, Niklas KJ, Reich PB, Olesksyn PP, Mommer L (2012) Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol 193:30–50. doi:10.1111/j.1469-8137.2011.03952.x

    Article  CAS  PubMed  Google Scholar 

  • Rhizopoulou S, Davies WJ (1993) Leaf and root growth dynamics in Eucalyptus globulus seedlings grown in drying soil. Trees Struct Funct 8:1–8

    Article  Google Scholar 

  • Sessa EB, Givnish TJ (2014) Leaf form and photosynthetic physiology of Dryopteris species distributed along light gradients in eastern North America. Funct Ecol 28:108–123

    Article  Google Scholar 

  • Sims DA, Pearcy RW (1992) Response of leaf anatomy and photosynthetic capacity in Alocasia macrorrhiza (Araceae) to a transfer from low to high light. Am J Bot 79:449–455

    Article  Google Scholar 

  • Stape JL, Gonçalves JLM, Gonçalves AN (2001) Relationships between nursery practices and field performance for Eucalyptus plantations in Brazil. New For 22:19–21

    Article  Google Scholar 

  • Terashima I, Miyazawa SI, Hanba Y (2001) Why are sun leaves thicker than shade leaves? Consideration based on analyses of CO2 diffusion in the leaf. J Plant Res 114:93–105

    Article  CAS  Google Scholar 

  • Valladares F, Niinemets Ü (2008) Shade tolerance, a key plant feature of complex nature and consequences. Annu Rev Ecol Evol Syst 39:237–257. doi:10.1146/annurev.ecolsys.39.110707.173506

    Article  Google Scholar 

  • Walters RG (2005) Towards an understanding of photosynthetic acclimation. J Exp Bot 56:435–447. doi:10.1093/jxb/eri060

    Article  CAS  PubMed  Google Scholar 

  • Yamashita N, Ishida A, Kushima H, Tanaka N (2000) Acclimation to sudden increase in light favoring an invasive over native trees in subtropical islands, Japan. Oecologia 125:412–419. doi:10.1007/s004420000475

    Article  Google Scholar 

  • Yang SJ, Sun M, Zhang YJ, Cochard H, Cao KF (2014) Strong leaf morphological, anatomical, and physiological responses of a subtropical woody bamboo (Sinarundinaria nitida) to contrasting light environments. Plant Ecol 215:97–109. doi:10.1007/s11258-013-0281-z

    Article  Google Scholar 

  • Yano S, Terashima I (2004) Developmental process of sun and shade leaves in Chenopodium album L. Plant Cell Environ 27:781–793

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Biology Pos-Graduation Program of Universidade Estadual de Londrina, and Laboratório de Biodiversidade e Restauração de Ecossistemas of the Universidade Estadual de Londrina for making available the seeds and the physical space.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edmilson Bianchini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazzanatti, T., Calzavara, A.K., Pimenta, J.A. et al. Light acclimation in nursery: morphoanatomy and ecophysiology of seedlings of three light-demanding neotropical tree species. Braz. J. Bot 39, 19–28 (2016). https://doi.org/10.1007/s40415-015-0203-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-015-0203-5

Keywords

Navigation