Skip to main content
Log in

Delineating a New Class of Membrane-Bound Guanylate Cyclases

  • Narrative Student Review
  • Published:
Springer Science Reviews

Abstract

Membrane-bound guanylate cyclases (GCs) possessing intrinsic GC activity constitute a family of catalytically active membrane-associated proteins that play crucial roles in a myriad of signal transduction processes. Currently known membrane-bound GCs are catalytically monofunctional with a domain architecture that consists of an extracellular ligand-binding domain and an intracellular portion that is composed of an inactive kinase homology domain and a functional GC catalytic center. A novel class of GC-linked receptor kinases was unearthed using homology-guided bioinformatic data mining tools designed from annotated amino acid residues in the GC catalytic centers of lower eukaryotes. The GC catalytic center in this new class of membrane-bound GCs is encapsulated within an active kinase domain, thereby conferring a dual catalytic function to this class of proteins. This is contrary to currently known classical membrane-bound GCs, which are monofunctional. There are currently four members of this novel class of membrane-bound GCs which have been demonstrated to possess intrinsic GC and kinase activity. Although there is a paucity of information as to how the dual catalysis in bifunctional membrane-bound GCs is physiologically regulated, their mechanism of action may be markedly distinct from that of classical membrane-bound GCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aimes RT, Hemmer W, Taylor SS (2000) Serine-53 at the tip of the glycine-rich loop of cAMP-dependent protein kinase: role in catalysis, P-site specificity, and interaction with inhibitors. Biochemistry 39:8325–8332. doi:10.1021/bi992800w

    Article  CAS  PubMed  Google Scholar 

  2. Amano Y, Tsubouchi H, Shinohara H, Ogawa M, Matsubayashi Y (2007) Tyrosine-sulfated glycopeptide involved in cellular proliferation and expansion in Arabidopsis. Proc Nat Acad Sci USA 104:18333–18338. doi:10.1073/pnas.0706403104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Anderson CM, Wagner TA, Perret M, He ZH, He D, Kohorn BD (2001) WAKs: cell wall-associated kinases linking the cytoplasm to the extracellular matrix. Plant Mol Biol 47:197–206. doi:10.1023/A:1010691701578

    Article  CAS  PubMed  Google Scholar 

  4. Barouch-Bentov R et al (2009) A conserved salt bridge in the G loop of multiple protein kinases is important for catalysis and for in vivo Lyn function. Mol Cell 33:43–52. doi:10.1016/j.molcel.2008.12.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bereta G, Wang B, Kiser PD, Baehr W, Jang G-F, Palczewski K (2009) Functional kinase homology domain is essential for the activity of photoreceptor guanylate cyclase 1. J Biol Chem 285:1899–1908. doi:10.1074/jbc.M109.061713

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Bojar D, Martinez J, Santiago J, Rybin V, Bayliss R, Hothorn M (2014) Crystal structures of the phosphorylated BRI1 kinase domain and implications for brassinosteroid signal initiation. Plant J 78:31–43. doi:10.1111/tpj.12445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Carrithers SL et al (2004) Guanylin and uroguanylin induce natriuresis in mice lacking guanylyl cyclase-C receptor Kid Int 65:40–53. doi:10.1111/j.1523-1755.2004.00375.x

    CAS  Google Scholar 

  8. Chang MS, Lowe DG, Lewis M, Hellmiss R, Chen E, Goeddel DV (1989) Differential activation by atrial and brain natriuretic peptides of two different receptor guanylate cyclases. Nature. doi:10.1038/341068a0

    Google Scholar 

  9. Chao YC, Chen CC, Lin YC, Breer H, Fleischer J, Yang RB (2015) Receptor guanylyl cyclase-G is a novel thermosensory protein activated by cool temperatures. EMBO J 34:294–306. doi:10.15252/embj.201489652

    Article  CAS  PubMed  Google Scholar 

  10. Chinkers M, Garbers DL, Chang MS, Lowe DG, Chin HM, Goeddel DV, Schulz S (1989) A membrane form of guanylate cyclase is an atrial natriuretic peptide receptor Nature 338:78–83. doi:10.1038/338078a0

    CAS  PubMed  Google Scholar 

  11. Clouse SD (2011) Brassinosteroid signal transduction: from receptor kinase activation to transcriptional networks regulating plant development. Plant Cell 23:1219–1230. doi:10.1105/tpc.111.084475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Diévart A, Dalal M, Tax FE, Lacey AD, Huttly A, Li J, Clark SE (2003) CLAVATA1 dominant-negative alleles reveal functional overlap between multiple receptor kinases that regulate meristem and organ development. Plant Cell 15:1198–1211. doi:10.1105/tpc.010504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Du L, Poovaiah BW (2005) Ca2+/calmodulin is critical for brassinosteroid biosynthesis and plant growth. Nature 437:741–745. doi:10.1038/nature03973

    Article  CAS  PubMed  Google Scholar 

  14. Duda T, Goraczniak RM, Pozdnyakov N, Sitaramayya A, Sharma RK (1998) Differential activation of rod outer segment membrane guanylate cyclases, ROS-GC1 and ROS-GC2, by CD-GCAP and identification of the signaling domain. Biochem Biophys Res Commun 242:118–122

    Article  CAS  PubMed  Google Scholar 

  15. Enkhbayar P, Kamiya M, Osaki M, Matsumoto T, Matsushima N (2004) Structural principles of leucine-rich repeat (LRR) proteins. Protein Struct Funct Genet 54:394–403. doi:10.1002/prot.10605

    Article  CAS  Google Scholar 

  16. Freihat L, Muleya V, Manallack DT, Wheeler JI, Irving HR (2014) Comparison of moonlighting guanylate cyclases: roles in signal direction? Biochem Soc Trans 42:1773–1779. doi:10.1042/BST20140223

    Article  CAS  PubMed  Google Scholar 

  17. Friedrichsen DM, Joazeiro CAP, Li J, Hunter T, Chory J (2000) Brassinosteroid-insensitive-1 is a ubiquitously expressed leucine-rich repeat receptor serine/threonine kinase. Plant Physiol 123:1247–1255. doi:10.1104/pp.123.4.1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fülle HJ, Vassar R, Foster DC, Yang RB, Axel R, Garbers DL (1995) A receptor guanylyl cyclase expressed specifically in olfactory sensory neurons. Proc Nat Acad Sci USA 92:3571–3575

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fuller F et al (1988) Atrial natriuretic peptide clearance receptor. Complete sequence and functional expression of cDNA clones. J Biol Chem 263:9395–9401

    CAS  PubMed  Google Scholar 

  20. Gendron JM et al (2012) Brassinosteroids regulate organ boundary formation in the shoot apical meristem of Arabidopsis. Proc Nat Acad Sci USA 109:21152–21157. doi:10.1073/pnas.1210799110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gendron JM, Wang ZY (2007) Multiple mechanisms modulate brassinosteroid signaling. Curr Opin Plant Biol 10:436–441. doi:10.1016/j.pbi.2007.08.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gou X et al (2012) Genetic evidence for an indispensable role of somatic embryogenesis receptor kinases in brassinosteroid signaling. PLoS Genet 8:e1002452. doi:10.1371/journal.pgen.100245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Graether SP, Heinonen TY, Raharjo WH, Jin JP, Mak AS (1997) Tryptophan residues in caldesmon are major determinants for calmodulin binding. Biochemistry 36:364–369. doi:10.1021/bi962008k

    Article  CAS  PubMed  Google Scholar 

  24. Gudesblat GE et al (2012) SPEECHLESS integrates brassinosteroid and stomata signalling pathways. Nat Cell Biol 14:548–554. doi:10.1038/ncb2471

    Article  CAS  PubMed  Google Scholar 

  25. Guo D, Zhang JJ, Huang XY (2009) Stimulation of guanylyl cyclase-D by bicarbonate. Biochemistry 48:4417–4422. doi:10.1021/bi900441v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hanks SK, Hunter T (1995) The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J 19:576–596

    Google Scholar 

  27. Hanks SK, Quinn AM, Hunter T (1988) The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241:42–52

    Article  CAS  PubMed  Google Scholar 

  28. Hartmann J, Fischer C, Dietrich P, Sauter M (2014) Kinase activity and calmodulin binding are essential for growth signaling by the phytosulfokine receptor PSKR1. Plant J 78:192–202. doi:10.1111/tpj.12460

    Article  CAS  PubMed  Google Scholar 

  29. Helten A, Saftel W, Koch KW (2007) Expression level and activity profile of membrane bound guanylate cyclase type 2 in rod outer segments. J Neurochem 103:1439–1446. doi:10.1111/j.1471-4159.2007.04923.x

    Article  CAS  PubMed  Google Scholar 

  30. Holton N, Cano-Delgado A, Harrison K, Montoya T, Chory J, Bishop GJ (2007) Tomato BRASSINOSTEROID INSENSITIVE1 is required for systemin-induced root elongation in Solanum pimpinellifolium but is not essential for wound signaling. Plant Cell 19:1709–1717. doi:10.1105/tpc.106.047795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Irving HR, Kwezi L, Wheeler JI, Gehring C (2012) Moonlighting kinases with guanylate cyclase activity can tune regulatory signal networks. Plant Signal Behav 7:201–204. doi:10.4161/psb.18891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jaillais Y, Hothorn M, Belkhadir Y, Dabi T, Nimchuk ZL, Meyerowitz EM, Chory J (2011) Tyrosine phosphorylation controls brassinosteroid receptor activation by triggering membrane release of its kinase inhibitor. Genes Dev 25:232–237. doi:10.1101/gad.2001911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jaillais Y, Vert G (2012) Brassinosteroids, gibberellins and light-mediated signalling are the three-way controls of plant sprouting. Nat Cell Biol 14:788–790. doi:10.1038/ncb2551

    Article  CAS  PubMed  Google Scholar 

  34. Joudoi T et al (2013) Nitrated cyclic GMP modulates guard cell signaling in Arabidopsis. Plant Cell 25:558–571. doi:10.1105/tpc.112.105049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kannan N, Neuwald AF (2005) Did protein kinase regulatory mechanisms evolve through elaboration of a simple structural component? J Mol Biol 351:956–972

    Article  CAS  PubMed  Google Scholar 

  36. Karlova R, Boeren S, van Dongen W, Kwaaitaal M, Aker J, Vervoort J, de Vries S (2009) Identification of in vitro phosphorylation sites in the Arabidopsis thaliana somatic embryogenesis receptor-like kinases. Proteomics 9:368–379. doi:10.1002/pmic.200701059

    Article  CAS  PubMed  Google Scholar 

  37. Kim TW, Michniewicz M, Bergmann DC, Wang ZY (2012) Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway. Nature 482:419–422. doi:10.1038/nature10794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Koch KW, Duda T, Sharma RK (2002) Photoreceptor specific guanylate cyclases in vertebrate phototransduction. Mol Cell Biochem 230:97–106

    Article  CAS  PubMed  Google Scholar 

  39. Kornev AP, Haste NM, Taylor SS, Ten Eyck LF (2006) Surface comparison of active and inactive protein kinases identifies a conserved activation mechanism. Proc Nat Acad Sci USA 103:17783–17788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Krol E et al (2010) Perception of the Arabidopsis danger signal peptide 1 involves the pattern recognition receptor AtPEPR1 and its close homologue AtPEPR2. J Biol Chem 285:13471–13479. doi:10.1074/jbc.M109.097394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kuhn M (2003) Structure, regulation, and function of mammalian membrane guanylyl cyclase receptors, with a focus on guanylyl cyclase-A. Circ Res 93:700–709. doi:10.1161/01.res.0000094745.28948.4d

    Article  CAS  PubMed  Google Scholar 

  42. Kutschmar A, Rzewuski G, Stührwohldt N, Bemmster GTS, Inzé D, Sauter M (2009) PSK-α promotes root growth in Arabidopsis. New Phyt 181:820–831

    Article  CAS  Google Scholar 

  43. Kwezi L, Meier S, Mungur L, Ruzvidzo O, Irving H, Gehring C (2007) The Arabidopsis thaliana brassinosteroid receptor (AtBRI1) contains a domain that functions as a guanylyl cyclase in vitro. PLoS One 2:e449. doi:10.1371/journal.pone.0000449

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Kwezi L et al (2011) The phytosulfokine (PSK) receptor is capable of guanylate cyclase activity and enabling cyclic GMP-dependant signaling in plants. J Biol Chem 286:22580–22588. doi:10.1074/jbc.M110.168823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ladwig F, Dahlke RI, Stuhrwohdldt N, Hartmann J, Harter K, Sauter M (2015) Phytosulfokine regulates growth in Arabidopsis through a response module at the plasma membrane that includes CYCLIC NUCLEOTIDE-GATED CHANNEL17, H-ATPase, and BAK1. Plant Cell 27:1718–1729. doi:10.1105/tpc.15.00306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Leinders-Zufall T et al (2007) Contribution of the receptor guanylyl cyclase GC-D to chemosensory function in the olfactory epithelium. Proc Nat Acad Sci USA 104:14507–14512. doi:10.1073/pnas.0704965104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lenhard M, Jürgens G, Laux T (2002) The WUSCHEL and SHOOTMERISTEM-LESS genes fulfill complementary roles in Arabidopsis shoot meristem regulation. Development 129:3195–3206

    CAS  PubMed  Google Scholar 

  48. Li J, Chory J (1997) A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90:928–938. doi:10.1016/S0092-8674(00)80357-8

    Google Scholar 

  49. Li J, Wen JQ, Lease KA, Doke JT, Tax FE, Walker JC (2002) BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110:213–222. doi:10.1016/s0092-8674(02)00812-7

    Article  CAS  PubMed  Google Scholar 

  50. Lin H et al (2008) Disruption of guanylyl cyclase-G protects against acute renal injury. J Am Soc Nephrol 19:339–348. doi:10.1681/asn.2007050550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lisso J, Steinhauser D, Altmann T, Kopka J, Müssig C (2005) Identification of brassinosteroid-related genes by means of transcript co-response analyses. Nucleic Acids Res 33:2685–2696. doi:10.1093/nar/gki566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu Y, Ruoho AE, Rao VD, Hurley JH (1997) Catalytic mechanism of the adenylyl and guanylyl cyclases: modeling and mutational analysis. Proc Nat Acad Sci USA 94:13414–13419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Loivamäki M, Stührwohldt N, Deeken R, Steffens B, Roitsch T, Hedrich R, Sauter M (2010) A role for PSK signaling in wounding and microbial interactions in Arabidopsis. Physiol Planta 139:348–357. doi:10.1111/j.1399-3054.2010.01371.x

    Google Scholar 

  54. Lowe DG, Chang MS, Hellmiss R, Chen E, Singh S, Garbers DL, Goeddel DV (1989) Human atrial natriuretic peptide receptor defines a new paradigm for second messenger signal transduction. EMBO J 8:1377–1384

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Lowe DG et al (1995) Cloning and expression of a second photoreceptor-specific membrane retina guanylyl cyclase (RetGC), RetGC-2. Proc Nat Acad Sci USA 92:5535–5539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ludidi NN, Gehring C (2003) Identification of a novel protein with guanylyl cyclase activity in Arabidopsis thaliana. J Biol Chem 278:6490–6494. doi:10.1074/jbc.M210983200

    Article  CAS  PubMed  Google Scholar 

  57. Maathuis FJM (2006) cGMP modulates gene transcription and cation transport in Arabidopsis roots. Plant J 45:700–711. doi:10.1111/j.1365-313X.2005.02616.x

    Article  CAS  PubMed  Google Scholar 

  58. Matsubayashi Y, Ogawa M, Kihara H, Niwa M, Sakagami Y (2006) Disruption and overexpression of Arabidopsis phytosulokine receptor gene affects cellular longevity and potential for growth. Plant Physiol 142:45–53. doi:10.1002/tcr.20090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Matsubayashi Y, Ogawa M, Morita A, Sakagami Y (2002) An LRR receptor kinase involved in perception of a peptide plant hormone, phytosulfokine. Science 296:1470–1472. doi:10.1126/science.1069607

    Article  CAS  PubMed  Google Scholar 

  60. Meier S, Ruzvidzo O, Morse M, Donaldson L, Kwezi L, Gehring C (2010) The Arabidopsis Wall Associated Kinase-Like 10 gene encodes a functional guanylyl cyclase and is co-expressed with pathogen defense related genes. PLoS One 5:e8904. doi:10.1371/journal.pone.0008904

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Misono KS (2002) Natriuretic peptide receptor: structure and signaling. Mol Cell Biochem 230:49–60. doi:10.1007/978-1-4615-0927-1_3

    Article  CAS  PubMed  Google Scholar 

  62. Mosher S et al (2013) The tyrosine-sulfated peptide receptors PSKR1 and PSY1R modify the immunity of Arabidopsis to biotrophic and necrotrophic pathogens in an antagonistic manner. Plant J 73:469–482. doi:10.1111/tpj.12050

    Article  CAS  PubMed  Google Scholar 

  63. Muleya V, Wheeler JI, Ruzvidzo O, Freihat L, Manallack DT, Gehring C, Irving HR (2014) Calcium is the switch in the moonlighting dual function of the ligand-activated receptor kinase phytosulfokine receptor 1. Cell Commun Signal 12:60. doi:10.1186/s12964-014-0060-z (61–65)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Nam KH, Li J (2002) BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell 110:203–212. doi:10.1016/S0092-8674(02)00814-0

    Article  CAS  PubMed  Google Scholar 

  65. Nishimura R et al (2002) HAR1 mediates systemic regulation of symbiotic organ development. Nature 420:426–429. doi:10.1038/nature01231

    Article  CAS  PubMed  Google Scholar 

  66. Noguchi T et al (1999) Brassinosteroid-insensitive dwarf mutants of Arabidopsis accumulate brassinosteroids. Plant Physiol 121:743–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Oh M-H, Kim HS, Wu X, Clouse SD, Zielinski RE, Huber SC (2012) Calcium/calmodulin inhibition of the Arabidopsis BRASSINOSTEROID-INSENSITIVE 1 receptor kinase provides a possible link between calcium and brassinosteroid signalling. Biochem J 443:515–523. doi:10.1042/BJ20111871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Oh M-H, Wang X, Clouse SD, Huber SC (2012) Deactivation of the Arabidopsis BRASSINOSTEROID INSENSITIVE 1 (BRI1) receptor kinase by autophosphorylation within the glycine-rich loop. Proc Nat Acad Sci USA 109:327–332. doi:10.1073/pnas.1108321109

    Article  CAS  PubMed  Google Scholar 

  69. Oh MH, Wang X, Kota U, Goshe MB, Clouse SD, Huber SC (2009) Tyrosine phosphorylation of the BRI1 receptor kinase emerges as a component of brassinosteroid signaling in Arabidopsis. Proc Nat Acad Sci USA 106:658–663. doi:10.1073/pnas.1108321109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Oh MH, Ray WK, Huber SC, Asara JM, Gage DA, Clouse SD (2000) Recombinant brassinosteroid insensitive 1 receptor-like kinase autophosphorylates on serine and threonine residues and phosphorylates a conserved peptide motif in vitro. Plant Physiol 124:751–765. doi:10.1104/pp.124.2.751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Padayatti PS, Pattanaik P, Ma X, van den Akker F (2004) Structural insights into the regulation and the activation mechanism of mammalian guanylyl cyclases. Pharmacol Therap 104:83–99. doi:10.1016/j.pharmthera.2004.08.003

    Article  CAS  Google Scholar 

  72. Pearce LR, Komander D, Alessi DR (2010) The nuts and bolts of AGC protein kinases. Nat Rev Mol Cell Biol 11:9–22. doi:10.1038/nrm282

    Article  CAS  PubMed  Google Scholar 

  73. Pharmawati M, Billington T, Gehring CA (1998) Stomatal guard cell responses to kinetin and natriuretic peptides are cGMP dependent. Cell Mol Life Sci 54:272–276

    Article  CAS  PubMed  Google Scholar 

  74. Pierkes M et al (2002) Increased effects of C-type natriuretic peptide on cardiac ventricular contractility and relaxation in guanylyl cyclase A-deficient mice. Cardiovasc Res 53:852–861

    Article  CAS  PubMed  Google Scholar 

  75. Porter JG, Scarborough RM, Wang Y, Schenk D, McEnroe GA, Kang LL, Lewicki JA (1989) Recombinant expression of a secreted form of the atrial natriuretic peptide clearance receptor. J Biol Chem 264:14179–14184

    CAS  PubMed  Google Scholar 

  76. Postel S et al (2010) The multifunctional leucine-rich repeat receptor kinase BAK1 is implicated in Arabidopsis development and immunity. Eur J Cell Biol 89:169–174. doi:10.1016/j.ejcb.2009.11.00

    Article  CAS  PubMed  Google Scholar 

  77. Potter LR (2005) Domain analysis of human transmembrane guanylyl cyclase receptors: implications for regulation. Front Biosci 10:1205–1220. doi:10.2741/1613

    Article  CAS  PubMed  Google Scholar 

  78. Potter LR (2011) Guanylyl cyclase structure, function and regulation. Cell Signal 23:1921–1926. doi:10.1016/j.cellsig.2011.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Potter LR (2011) Regulation and therapeutic targeting of peptide-activated receptor guanylyl cyclases. Pharmacol Therap 130:71–82. doi:10.1016/j.pharmthera.2010.12.005

    Article  CAS  Google Scholar 

  80. Qi Z, Verma R, Gehring C, Yamaguchi Y, Zhao Y, Ryan CA, Berkowitz GA (2010) Ca2+ signaling by plant Arabidopsis thaliana Pep peptides depends on AtPepR1, a receptor with guanylyl cyclase activity, and cGMP-activated Ca2+ channels. Proc Nat Acad Sci USA 107:21193–21198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rauch A, Leipelt M, Russwurm M, Steegborn C (2008) Crystal structure of guanylyl cyclase Cya2. Proc Nat Acad Sci USA 105:15720–15725. doi:10.1073/pnas.0808473105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Robinson JW, Potter LR (2012) Guanylyl cyclases A and B are asymmetric dimers that are allosterically activated by ATP binding to the catalytic domain. Sci Signal 5:ra65. doi:10.1126/scisignal.2003253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Russinova E, Borst J-W, Kwaaitaal M, Caňo-Delado A, Yin U, Chory J, de Vries SC (2004) Heterodimerization and endocytosis of Arabidopsis brassinosteroid receptors BRI1 and AtSERK3 (BAK1). Plant Cell 16:3216–3229. doi:10.1105/tpc.104.025387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Schoof H, Lenhard M, Haecker A, Mayer KFX, Jürgens G, Laux T (2000) The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100:635–644. doi:10.1016/S0092-8674(00)80700-X

    Article  CAS  PubMed  Google Scholar 

  85. Schulz S (2005) C-type natriuretic peptide and guanylyl cyclase B receptor. Peptides 26:1024–1034. doi:10.1016/j.peptides.2004.08.027

    Article  CAS  PubMed  Google Scholar 

  86. Schulz S, Green CK, Yuen PS, Garbers DL (1990) Guanyly cyclase is a heat stable enterotoxin receptor. Cell 63:941–948. doi:10.1016/0092-8674(90)90497-3

    Article  CAS  PubMed  Google Scholar 

  87. Schulz S, Singh S, Bellet RA, Singh G, Tubb DJ, Chin H, Garbers DL (1989) The primary structure of a plasma membrane guanylate cyclase demonstrates diversity within this new receptor family. Cell 58:1155–1162. doi:10.1016/0092-8674(89)90513-8

    Article  CAS  PubMed  Google Scholar 

  88. Schulz S, Wedel BJ, Matthews A, Garbers DL (1997) The cloning and expression of a new guanylyl cyclase orphan receptor. J Biol Chem 273:1032–1037. doi:10.1074/jbc.273.2.1032

    Article  Google Scholar 

  89. She J et al (2011) Structural insight into brassinosteroid perception by BRI1. Nature 474:472–477. doi:10.1038/nature10178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Shyjan AW, de Sauvage FJ, Gillet NA, Goeddel DV, Lowe DG (1992) Molecular cloning of a retina-specific membrane guanylate cyclase. Neuron 9:727–737. doi:10.1016/0896-6273(92)90035-C

    Article  CAS  PubMed  Google Scholar 

  91. Sinđić A, Schlatter E (2006) Cellular effects of guanylin and uroguanylin. J Am Soc Nephrol 17:607–616. doi:10.1681/asn.2005080818

    Article  PubMed  CAS  Google Scholar 

  92. Stührwohldt N, Dahlke RI, Steffens B, Johnson A, Sauter M (2011) Phytosulfokine-α controls hypocotyl length and cell expansion in Arabidopsis thaliana through phytosulfokine receptor 1. PLoS One 6:e21054. doi:10.1371/journal.pone.0021054

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Suita K, Kiryu T, Sawada M, Mitsui M, Nakagawa M, Kanamaru K, Yamagata H (2009) Cyclic GMP acts as a common regulator for the transcriptional activation of the flavonoid biosynthetic pathway in soybean. Planta 229:403–413. doi:10.1007/s00425-008-0839-5

    Article  CAS  PubMed  Google Scholar 

  94. Sun L, Wang H, Hu J, Han J, Matsunami H, Luo M (2009) Guanylyl cyclase-D in the olfactory CO2 neurons is activated by bicarbonate. Proc Nat Acad Sci USA 106:2041–2046. doi:10.1073/pnas.0812220106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Szmidt-Jaworska A, Jaworski K, Pawelek A, Kocewicz J (2009) Molecular cloning and characterization of a guanylyl cyclase, PNGC-1, involved in light signaling in Pharbitis nil. J Plant Growth Reg 28:367–380. doi:10.1007/s10725-008-9326-z

    Article  CAS  Google Scholar 

  96. Tang J, Han Z, Sun Y, Zhang H, Gong X, Chai J (2015) Structural basis for recognition of an endogenous peptide by the plant receptor kinase PEPR1. Cell Res 25:110–120. doi:10.1038/cr.2014.161

    Article  CAS  PubMed  Google Scholar 

  97. Torii KU (2004) Leucine-rich repeat receptor kinases in plants: structure, function, and signal transduction pathways. Int Rev Cytology 234:1–46. doi:10.1016/S0074-7696(04)34001-5

    Article  CAS  Google Scholar 

  98. Tremblay J, Desjardins R, Hum D, Gutkowska J, Hamet P (2002) Biochemistry and physiology of the natriuretic peptide receptor guanylyl cyclases. Mol Cell Biochem 230:31–47. doi:10.1023/A:1014260204524

    Article  CAS  PubMed  Google Scholar 

  99. Trotochaud AE, Hao T, Wu G, Yang Z, Clark SE (1999) The CLAVATA1 receptor-like kinase requires CLAVATA3 for its assembly into a signaling complex that includes KAPP and a Rho-related protein. Plant Cell 11:393–405. doi:10.1105/tpc.11.3.393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. van Zanten M, Snoek LB, Proveniers MCG, Peeters AJM (2009) The many functions of ERECTA. Trends Plant Sci 14:214–218. doi:10.1016/j.tplants.2009.01.010

    Article  PubMed  CAS  Google Scholar 

  101. Vandenbussche F, Callebert P, Zadnikova P, Benkova E, Van Der Straeten D (2013) Brassinosteroid control of shoot gravitropism interacts with ethylene and depends on auxin signaling components. Am J Bot 100:215–225. doi:10.3732/ajb.120026

    Article  CAS  PubMed  Google Scholar 

  102. Wagner TA, Kohorn BD (2001) Wall-associated kinases are expressed throughout plant development and are required for cell expansion. Plant Cell 13:303–318. doi:10.1105/tpc.13.2.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wang X et al (2005) Identification and functional analysis of in vivo phosphorylation sites of the Arabidopsis BRASSINOSTEROID-INSENSITIVE1 receptor kinase. Plant Cell 17:1685–1703. doi:10.1105/tpc.105.031393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang X et al (2008) Sequential transphosphorylation of the BRI1/BAK1 receptor kinase complex impacts early events in brassinosteroid signaling. Dev Cell 15:220–235. doi:10.1016/j.devcel.2008.06.011

    Article  CAS  PubMed  Google Scholar 

  105. Wang X, Li X, Meisenhelder J, Hunter T, Yoshida S, Asami T, Chory J (2005) Autoregulation and homodimerization are involved in the activation of the plant steroid receptor BRI1. Dev Cell 8:855–865. doi:10.1016/j.devcel.2005.05.001

    Article  CAS  PubMed  Google Scholar 

  106. Wang ZY, Seto H, Fujioka S, Yoshida S, Chory J (2001) BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature 410:380–383. doi:10.1038/35066597

    Article  CAS  PubMed  Google Scholar 

  107. Wang ZY, Zhu JY, Sae-Seaw J (2013) Brassinosteroid signaling. Development 140:1615–1620. doi:10.1242/dev.060590

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Weljie AM, Vogel HJ (2000) Tryptophan fluorescence of calmodulin binding domain peptides interacting with calmodulin containing unnatural methionine analogues. Protein Eng 13:59–66. doi:10.1093/protein/13.1.59

    Article  CAS  PubMed  Google Scholar 

  109. Wheeler JI, Irving HR (2010) Evolutionary advantages of secreted peptide signalling molecules. Funct Plant Biol 37:382–394. doi:10.1071/FP09242

    Article  CAS  Google Scholar 

  110. Wilson EM, Chinkers M (1995) Identification of sequences mediating guanylyl cyclase dimerization. Biochemistry 34:4696–4701. doi:10.1021/bi00014a025

    Article  CAS  PubMed  Google Scholar 

  111. Winger JA, Derbyshire ER, Lamers MH, Marletta MA, Kuriyan J (2008) The crystal structure of the catalytic domain of a eukaryotic guanylate cyclase. BMC Struct Biol 8:42. doi:10.1186/1472-6807-8-42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Wong A, Gehring C (2013) The Arabidopsis thaliana proteome harbors undiscovered multi-domain molecules with functional guanylyl cyclase catalytic centers. Cell Commun Signal 11:48. doi:10.1186/1478-811X-11-48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wong L, Jennings PA, Adams JA (2004) Communication pathways between the nucleotide pocket and distal regulatory sites in protein kinases. Acc Chem Res 37:304–311. doi:10.1021/ar020128g

    Article  CAS  PubMed  Google Scholar 

  114. Wong SK, Garbers DL (1992) Receptor guanylyl cyclases. J Clin Invest 90:299–305. doi:10.1172/JCI115862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Xu W, Huang J, Li B, Li J, Wang Y (2008) Is kinase activity essential for biological functions of BRI1? Cell Res 18:472–478. doi:10.1038/cr.2008.36

    Article  CAS  PubMed  Google Scholar 

  116. Yamaguchi Y, Pearce G, Ryan CA (2006) The cell surface leucine-rich repeat receptor for AtPep1, an endogenous peptide elicitor in Arabidopsis, is functional in transgenic tobacco cells. Proc Nat Acad Sci USA 103:10104–10109. doi:10.1073/pnas.0603729103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yang H, Matsubayashi Y, Hanai H, Sakagami Y (2000) Phytosulfokine-α, a peptide growth factor found in higher plants: its structure, functions, precursor and receptors. Plant Cell Physiol 41:825–830. doi:10.1093/pcp/pcd009

    Article  CAS  PubMed  Google Scholar 

  118. Yasoda et al (1998) Natriuretic peptide regulation of endochondral ossification. Evidence for possible roles of the C-type natriuretic peptide/guanylyl cyclase-B pathway. J Biol Chem 273:11695–11700. doi:10.1074/jbc.273.19.11695

    Article  CAS  PubMed  Google Scholar 

  119. Yun HS, Bae YH, Lee YJ, Chang SC, Kim SK, Li J, Nam KH (2009) Analysis of phosphorylation of the BRI1/BAK1 complex in arabidopsis reveals amino acid residues critical for receptor formation and activation of BR signaling. Mol Cell 27:183–190. doi:10.1007/s10059-009-0023-1

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the Australian Research Council (ARC) for funding our research within this field. The Monash Institute of Pharmaceutical Sciences for providing funding in the form of a postgraduate scholarship.

Author Contribution

VM conceived the review and co-wrote the manuscript with HRI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen R. Irving.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Endorsed by Helen Irving.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muleya, V., Irving, H.R. Delineating a New Class of Membrane-Bound Guanylate Cyclases. Springer Science Reviews 4, 1–13 (2016). https://doi.org/10.1007/s40362-015-0037-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40362-015-0037-3

Keywords

Navigation