Skip to main content
Log in

18F-FCH and 90Y PET/CT data for the early evaluation of HCC radioembolisation

  • Pictorial Essay
  • Published:
Clinical and Translational Imaging Aims and scope Submit manuscript

Abstract

In the recent years, there has been a growing interest in the use of 90Y-microspheres for regional HCC therapy with the therapy response assessment as a crucial point. Because morphologic imaging performance is limited in this set, functional metabolic imaging method, which can early and reliably distinguish between therapy responders and non-responders, is highly needed. The purpose of this pictorial essay was to demonstrate the potential value of 18F-fluoro-choline positron emission tomography (18F-FCH-PET)/CT in detecting and early-therapy monitoring of HCC patients who underwent to TARE, by showing exemplary HCC patients who underwent 18F-FCH-PET/CT as part of their routine clinical work-up in our institution. In addition, we aimed to illustrate that the mapping of the 90Y-microspheres distribution provided by 90Y-PET/CT may anticipate information about treatment response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bosetti C, Levi F, Boffetta P, Lucchini F, Negri E, La Vecchia C (2008) Trends in mortality from hepatocellular carcinoma in Europe, 1980–2004. Hepatology 48:137–145. https://doi.org/10.1002/hep.22312

    Article  PubMed  Google Scholar 

  2. Sacco R, Conte C, Tumino E, Parisi G, Marceglia S, Metrangolo S, Eggenhoffner R, Bresci G, Cabibbo G, Giacomelli L (2016) Transarterial radioembolization for hepatocellular carcinoma: a review. J Hepatocell Carcinoma 25(3):25–29. https://doi.org/10.2147/JHC.S50359

    Article  Google Scholar 

  3. Verslype C, Rosmorduc O, Rougier P, ESMO Guidelines Working Group (2012) ESMO Guidelines Working Group. Hepatocellular carcinoma: ESMO-ESDO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 23 Suppl 7:vii41–48. https://doi.org/10.1093/annonc/mds225

    Article  CAS  PubMed  Google Scholar 

  4. Chan SL, Mo FK, Johnson PJ, Hui EP, Ma BB, Ho WM, Lam KC, Chan AT, Mok TS, Yeo W (2009) New utility of an old marker: serial alpha-fetoprotein measurement in predicting radiologic response and survival of patients with hepatocellular carcinoma undergoing systemic chemotherapy. J Clin Oncol 27(3):446–452. https://doi.org/10.1200/JCO.2008.18.8151

    Article  CAS  PubMed  Google Scholar 

  5. Murakami T, Okada M, Hyodo T (2012) CT versus MR imaging of hepatocellular carcinoma: toward improved treatment decisions. Magn Reson Med Sci 11:75–81

    Article  Google Scholar 

  6. Jiang T, Zhu AX, Sahani DV (2013) Established and novel imaging biomarkers for assessing response to therapy in hepatocellular carcinoma. J Hepatol 58:169–177. https://doi.org/10.1016/j.jhep.2012.08.022

    Article  CAS  PubMed  Google Scholar 

  7. Forner A, Ayuso C, Varela M, Rimola J, Hessheimer AJ, de Lope CR, Reig M, Bianchi L, Llovet JM, Bruix J (2009) Evaluation of tumor response after locoregional therapies in hepatocellular carcinoma: are response evaluation criteria in solid tumors reliable? Cancer 115:616–623. https://doi.org/10.1002/cncr.24050

    Article  PubMed  Google Scholar 

  8. Lencioni R, Llovet JM (2010) Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin Liver Dis 30(1):52–60. https://doi.org/10.1055/s-0030-1247132

    Article  CAS  PubMed  Google Scholar 

  9. Riaz A, Kulik L, Lewandowski RJ, Ryu RK, Giakoumis Spear G, Mulcahy MF, Abecassis M, Baker T, Gates V, Nayar R, Miller FH, Sato KT, Omary RA, Salem R (2009) Radiologic-pathologic correlation of hepatocellular carcinoma treated with internal radiation using yttrium-90 microspheres. Hepatology 49(4):1185–1193. https://doi.org/10.1002/hep.22747

    Article  PubMed  Google Scholar 

  10. Monsky WL, Garza AS, Kim I, Loh S, Lin TC, Li CS, Fisher J, Sandhu P, Sidhar V, Chaudhari AJ, Lin F, Deutsch LS, Badawi RD (2011) Treatment planning and volumetric response assessment for Yttrium-90 radioembolization: semiautomated determination of liver volume and volume of tumor necrosis in patients with hepatic malignancy. Cardiovasc Intervent Radiol 34(2):306–318. https://doi.org/10.1007/s00270-010-9938-3

    Article  PubMed  Google Scholar 

  11. Galizia MS, Töre HG, Chalian H, McCarthy R, Salem R, Yaghmai V (2012) MDCT necrosis quantification in the assessment of hepatocellular carcinoma response to yttrium 90 radioembolization therapy: comparison of two-dimensional and volumetric techniques. Acad Radiol 19(1):48–54. https://doi.org/10.1016/j.acra.2011.09.005

    Article  PubMed  Google Scholar 

  12. European Association for the Study of the Liver, European Organisation for Research and Treatment of Cancer (2012) EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol 56:908–943. https://doi.org/10.1016/j.jhep.2011.12.001

    Article  Google Scholar 

  13. Talbot JN, Fartoux L, Balogova S, Nataf V, Kerrou K, Gutman F, Huchet V, Ancel D, Grange JD, Rosmorduc O (2010) Detection of hepatocellular carcinoma with PET/CT: a prospective comparison of 18F-fluorocholine and 18F-FDG in patients with cirrhosis or chronic liver disease. J Nucl Med 51:1699–1706. https://doi.org/10.2967/jnumed.110.075507

    Article  PubMed  Google Scholar 

  14. Talbot JN et al (2014) Use of choline PET for studying hepatocellular carcinoma. Clin Transl Imaging 2:103–113

    Article  Google Scholar 

  15. Kwee SA, Wong LL, Hernandez BY, Chan OT, Sato MM, Tsai N (2015) Chronic Liver Disease and the Detection of Hepatocellular Carcinoma by [18F]fluorocholine PET/CT. Diagnostics 5:189–199. https://doi.org/10.3390/diagnostics5020189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Haug AR (2017) Imaging of primary liver tumors with positron-emission tomography. Q J Nucl Med Mol Imaging 61(3):292–300. https://doi.org/10.23736/S1824-4785.17.02994-6

    Article  PubMed  Google Scholar 

  17. Lopci E, Torzilli G, Poretti D, de Neto LJ, Donadon M, Rimassa L, Lanza E, Sabongi JG, Ceriani R, Personeni N, Palmisano A, Pedicini V, Comito T, Scorsetti M, Chiti A (2015) Diagnostic accuracy of 11C-choline PET/CT in comparison with CT and/or MRI in patients with hepatocellular carcinoma. Eur J Nucl Med Mol Imaging 42:1399–1407. https://doi.org/10.1007/s00259-015-3079-5

    Article  CAS  PubMed  Google Scholar 

  18. Bertagna F, Bertoli M, Bosio G, Biasiotto G, Sadeghi R, Giubbini R, Treglia G (2014) Diagnostic role of radiolabelled choline PET or PET/CT in hepatocellular carcinoma: a systematic review and meta-analysis. Hepatol Int 8:493–500. https://doi.org/10.1007/s12072-014-9566-0

    Article  PubMed  Google Scholar 

  19. Talbot JN, Fartoux L, Balogova S, Nataf V, Kerrou K, Gutman F, Huchet V, Ancel D, Grange JD, Rosmorduc O (2010) Detection of hepatocellular carcinoma with PET/CT: a prospective comparison of 18F-fluorocholine and 18F-FDG in patients with cirrhosis or chronic liver disease. J Nucl Med 51:1699–1706. https://doi.org/10.2967/jnumed.110.075507

    Article  PubMed  Google Scholar 

  20. Castilla-Lièvre MA, Franco D, Gervais P, Kuhnast B, Agostini H, Marthey L, Désarnaud S, Helal BO (2016) Diagnostic value of combining 11c-choline and 18F-FDG PET/CT in hepatocellular carcinoma. Eur J Nucl Med Mol Imaging 43:852–859. https://doi.org/10.1007/s00259-015-3241-0

    Article  CAS  PubMed  Google Scholar 

  21. Fartoux L, Balogova S, Nataf V, Kerrou K, Huchet V, Rosmorduc O, Talbot JN (2012) A pilot comparison of 18F-fluorodeoxyglucose and 18F-fluorocholine PET/CT to predict early recurrence of unifocal hepatocellular carcinoma after surgical resection. Nucl Med Commun 33(7):757–765. https://doi.org/10.1097/MNM.0b013e328350fb9f

    Article  PubMed  Google Scholar 

  22. Hartenbach M, Weber S, Albert NL, Hartenbach S, Hirtl A, Zacherl MJ, Paprottka PM, Tiling R, Bartenstein P, Hacker M, Haug AR (2015) Evaluating Treatment response of radioembolization in intermediate-Stage hepatocellular carcinoma Patients using 18f- Fluoroethylcholine PET/CT. J Nucl Med 56:1661–1666. https://doi.org/10.2967/jnumed.115.158758

    Article  CAS  PubMed  Google Scholar 

  23. Wondergem M, Smits ML, Elschot M, de Jong HW, Verkooijen HM, van den Bosch MA, Nijsen JF, Lam MG (2013) 99mTc-macroaggregated albumin poorly predicts the intrahepatic distribution of 90Y resin microspheres in hepatic radioembolization. J Nucl Med 54:1294–1301. https://doi.org/10.2967/jnumed.112.117614

    Article  CAS  PubMed  Google Scholar 

  24. Piasecki P, Brzozowski K, Zięcina P, Podgajny Z, Budzyńska A, Korniluk J, Kamiński G, Dziuk M (2015) The use of 90Y-PET imaging in evaluation of 90Y-microspheres distribution in the liver: initial results. Nucl Med Rev Cent East Eur 18(2):92–96. https://doi.org/10.5603/NMR.2015.0022

    Article  PubMed  Google Scholar 

  25. Elschot M, Vermolen BJ, Lam MG, de Keizer B, van den Bosch MA, de Jong HW (2013) Quantitative comparison of PET and Bremsstrahlung SPECT for imaging the in vivo yttrium-90 microsphere distribution after liver radioembolization. PLoS ONE 8:e55742. https://doi.org/10.1371/journal.pone.0055742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bagni O, D’Arienzo M, Chiaramida P, Chiacchiararelli L, Cannas P, D’Agostini A, Cianni R, Salvatori R, Scopinaro F (2012) 90Y-PET for the assessment of microsphere biodistribution after selective internal radiotherapy. Nucl Med Commun 33:198–204. https://doi.org/10.1097/MNM.0b013e32834dfa58

    Article  PubMed  Google Scholar 

  27. Carlier T, Eugène T, Bodet-Milin C, Garin E, Ansquer C, Rousseau C, Ferrer L, Barbet J, Schoenahl F, Kraeber-Bodéré F (2013) Assessment of acquisition protocols for routine imaging of Y-90 using PET/CT. EJNMMI Res 3:11. https://doi.org/10.1186/2191-219X-3-11

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kao YH, Tan EH, Ng CE, Goh SW (2011) Yttrium-90 time-of-flight PET/CT is superior to bremsstrahlung SPECT/CT for postradioembolization imaging of microsphere biodistribution. Clin Nucl Med 36:e186–e187. https://doi.org/10.1097/RLU.0b013e31821c9a11

    Article  PubMed  Google Scholar 

  29. Padia SA, Alessio A, Kwan SW, Lewis DH, Vaidya S, Minoshima S (2013) Comparison of positron emission tomography and bremsstrahlung imaging to detect particle distribution in patients undergoing yttrium-90 radioembolization for large hepatocellular carcinomas or associated portal vein thrombosis. J Vasc Interv Radiol 24:1147–1153. https://doi.org/10.1016/j.jvir.2013.04.018

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Rubini.

Ethics declarations

Conflict of interest

Cristina Ferrari, Alessandra Di Palo, Artor Niccoli Asabella, Vittorio Didonna, Girolamo Ranieri, Cosmo Damiano Gadaleta, and GiuseppeRubini declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrari, C., Di Palo, A., Niccoli Asabella, A. et al. 18F-FCH and 90Y PET/CT data for the early evaluation of HCC radioembolisation. Clin Transl Imaging 6, 357–367 (2018). https://doi.org/10.1007/s40336-018-0295-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40336-018-0295-6

Keywords

Navigation