Skip to main content
Log in

Closed form least-squares solution to 3D symmetric Helmert transformation with rotational invariant covariance structure

  • Published:
Acta Geodaetica et Geophysica Aims and scope Submit manuscript

Abstract

Least-squares (LS) solutions to the 3D Helmert and symmetric Helmert transformations with rotational invariant covariance structure are studied in a unified framework. This is an extension of the 3D Helmert transformation with naïve identity covariance and the counterpart of the 2D symmetric Helmert transformation with rotational invariant covariance. It is found that the closed form LS solution still exists and that the rotation parameters are still the same between the Helmert and symmetric Helmert transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arun KS, Huang TS, Blostein SD (1987) Least-squares fitting of two 3-D point sets. IEEE Trans Pattern Anal Mach Intell 5:698–700

    Article  Google Scholar 

  • Chang G (2015) On least-squares solution to 3D similarity transformation problem under Gauss-Helmert model. J Geodesy 89(6):573–576

    Article  Google Scholar 

  • Fang X (2014) A total least squares solution for geodetic datum transformations. Acta Geod et Geophys 49(2):189–207

    Article  Google Scholar 

  • Felus YA, Burtch RC (2009) On symmetrical three-dimensional datum conversion. GPS Solut 13(1):65–74

    Article  Google Scholar 

  • Grafarend EW, Awange JL (2003) Nonlinear analysis of the three-dimensional datum transformation [conformal group C7(3)]. J Geodesy 77:66–76

    Article  Google Scholar 

  • Horn BK (1987) Closed-form solution of absolute orientation using unit quaternions. J Opt Soc Am A 4(4):629–642

    Article  Google Scholar 

  • Horn BK, Hilden HM, Negahdaripour S (1988) Closed-form solution of absolute orientation using orthonormal matrices. J Opt Soc Am A 5(7):1127–1135

    Article  Google Scholar 

  • Kanatani K, Niitsuma H. (2012a). Optimal Computation of 3-D Similarity from Space Data with Inhomogeneous Noise Distributions. Memoirs of the Faculty of Engineering, Okayama University, 46 (1–9)

  • Kanatani K, Niitsuma H (2012b) Optimal computation of 3-D similarity: Gauss-Newton vs. Gauss-Helmert. Comput Stat Data Anal 56(12):4470–4483

    Article  Google Scholar 

  • Li B, Shen Y, Lou L (2013) Noniterative datum transformation revisited with two-dimensional affine model as a case study. J Surv Eng 139(4):166–175

    Article  Google Scholar 

  • Mackenzie J (1957) The estimation of an orientation relationship. Acta Crystallogr A 10(1):61–62

    Article  Google Scholar 

  • Markley FL (1988) Attitude determination using vector observations and the singular value decomposition. J Astronaut Sci 36(3):245–258

    Google Scholar 

  • Neitzel F (2010) Generalization of total least-squares on example of unweighted and weighted 2D similarity transformation. J Geodesy 84(12):751–762

    Article  Google Scholar 

  • Sanso F (1973) An exact solution of the roto-translation problem. Photogrammetria 29:203–216

    Article  Google Scholar 

  • Schaffrin B (2006) A note on constrained total least-squares estimation. Linear Algebra Appl 417(1):245–258

    Article  Google Scholar 

  • Schaffrin B, Felus YA (2008) On the multivariate total least-squares approach to empirical coordinate transformations. Three algorithms. J Geodesy 82(6):373–383

    Article  Google Scholar 

  • Schaffrin B, Wieser A (2008) On weighted total least-squares adjustment for linear regression. J Geodesy 82(7):415–421

    Article  Google Scholar 

  • Shen Y, Chen Y, Zheng D-H (2006) A quaternion-based geodetic datum transformation algorithm. J Geodesy 80(5):233–239

    Article  Google Scholar 

  • Shuster MD, Oh S (1981) Three-axis attitude determination from vector observations. J Guid Control Dyn 4(1):70–77

    Article  Google Scholar 

  • Stephens M (1979) Vector correlation. Biometrika 66(1):41–48

    Article  Google Scholar 

  • Teunissen PJG (1984). Generalized inverses, adjustment, the datum problem and S-transformations. In: International School of Geodesy, 3rd Course: Optimization and Design of Geodetic Networks, Erice-Trapani-Sicily, pp 1–49

  • Teunissen PJG (1985) The geometry of geodetic inverse linear mapping and non-linear adjustment. Netherlands Geodetic Commision. Publications on Geodesy, New Series, pp 1–186

    Google Scholar 

  • Teunissen PJG (1986) Adjusting and testing with the models of the affine and similarity transformation. Manuscripta Geodaet 11:214–225

    Google Scholar 

  • Teunissen PJG (1988) The non-linear 2D symmetric Helmert transformation: an exact non-linear least-squares solution. Bulletin Géodésique 62(1):1–16

    Article  Google Scholar 

  • Teunissen PJG. (1989). A note on the bias in the symmetric Helmert transformation. Festschrift Torben Krarup: 335–342

  • Umeyama S (1991) Least-squares estimation of transformation parameters between two point patterns. IEEE Trans Pattern Anal Mach Intell 13(4):376–380

    Article  Google Scholar 

  • Xu P, Liu J, Shi C (2012) Total least squares adjustment in partial errors-in-variables models: algorithm and statistical analysis. J Geodesy 86(8):661–675

    Article  Google Scholar 

  • Yang Y (1999) Robust estimation of geodetic datum transformation. J Geodesy 73(5):268–274

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Natural Science Foundation of China (No. 41404001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guobin Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, G. Closed form least-squares solution to 3D symmetric Helmert transformation with rotational invariant covariance structure. Acta Geod Geophys 51, 237–244 (2016). https://doi.org/10.1007/s40328-015-0123-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40328-015-0123-7

Keywords

Navigation