Skip to main content
Log in

On exact solutions of some important nonlinear conformable time-fractional differential equations

  • Published:
SeMA Journal Aims and scope Submit manuscript

Abstract

The nonlinear fractional Boussinesq equations are known as the fractional differential equation class that has an important place in mathematical physics. In this study, a method called \(\Big (\frac{G'}{G^2}\Big )\)-extension method which works well and reveals exact solutions is used to examine nonlinear Boussinesq equations with conformable time-fractional derivative. This method is a very useful approach and extremely utility compared to other analytical methods. With the proposed method, there are three unique types of solutions such as hyperbolic, trigonometric and rational solutions. This approach can similarly be applied to other nonlinear fractional models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abazari, R., Jamshidzadeh, S., Biswas, A.: Solitary wave solutions of coupled Boussinesq equation. Complexity 21(52), 151–155 (2016)

    Article  MathSciNet  Google Scholar 

  2. Abazari, R., Jamshidzadeh, S., Biswas, A.: Multi soliton solutions based on interactions of basic traveling waves with an application to the nonlocal Boussinesq equation. Acta Physica Polonica B 47, 1101–1112 (2016)

    Article  MathSciNet  Google Scholar 

  3. Abdeljawad, T.: On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Abdou, M., Soliman, A.: New applications of variational iteration method. Physica D 211(1), 1–8 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Akbulut, A., Kaplan, M., Tascan, F.: The investigation of exact solutions of nonlinear partial differential equations by using exp(-\(\Phi (\varepsilon )\)) method, Optik - Int. J. Light Electr. Opt. 132, 382–387 (2017)

    Article  Google Scholar 

  6. Akil, M., Wehbe, A.: Stabilization of multidimensional wave equation with locally boundary fractional dissipation law under geometric conditions. Math. Control Relat. Fields 9(1), 97–116 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Akil, M., Chitour, Y., Ghader, M., Wehbe, A.: Stability and exact controllability of a Timoshenko system with only one fractional damping on the boundary. Asymptot. Anal. 119(3–4), 221–280 (2020)

    MathSciNet  MATH  Google Scholar 

  8. Akil, M., Ghader, M., Wehbe, A.: The influence of the coefficients of a system of wave equations coupled by velocities on its stabilization. SeMA J. 78, 287–333 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  9. Aksoy, E., Çevikel, A.C., Bekir, A.: Soliton solutions of (2+1)-dimensional time-fractional Zoomeron equation. Optik - Int. J. Light Electr. Opt. 127, 6933–6942 (2016)

    Article  Google Scholar 

  10. Bekir, A., Güner, Ö.: Exact solutions of nonlinear fractional differential equations by (G’/ G)-expansion method. Chin. Phys. B 22(11), 110202-1-110202–6 (2013)

    Article  Google Scholar 

  11. Biswas, A., Kara, A.H., Moraru, L., Triki, H., Moshokoa, S.P.: Shallow water waves modeled by the Boussinesq equation having logarithmic non linearity. Proc. Romanian Acad. Ser. A 18(2), 144–149 (2017)

    MathSciNet  Google Scholar 

  12. Biswas, A., Ekici, M., Sonmezoglu, A.: Gaussian solitary waves to Boussinesq equation with dual dispersion and logarithmic non linearity. Nonlinear Anal.: Model. Control 23(6), 942–950 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Caputo, M.: Vibrations of an infinite plate with a frequency independant. Q. J. Acoustic Soc. Am. 60, 634–639 (1976)

    Article  Google Scholar 

  14. Chen, J., Chen, H.: The (\(G^{\prime }/G^2\)) method and its application to coupled nonlinear Klein-Gordon equation. Journal of South China normal University (Natural Science Edition) 2, 013 (2012)

    Google Scholar 

  15. Chen, C., Jiang, Y.L.: Lie group analysis method for two classes of fractional partial differential equations. Commun. Nonlinear Sci. Numer. Simul. 26(1), 24–35 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cheng, X.Y., Wang, L.Z.: Invariant analysis, exact solutions and conservation laws of (2+1)-dimensional time fractional Navier-Stokes equations. Proc. R. Soc. A 477, 20210220 (2021)

    Article  MathSciNet  Google Scholar 

  17. Cheng, X.Y., Hou, J., Wang, L.Z.: Lie symmetry analysis, invariant subspace method and q-homotopy analysis method for solving fractional system of single-walled carbon nanotube. Comput. Appl. Math. 40, 1–17 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. Elwakil, S., El-Labany, S., Zahran, M., Sabry, R.: Modified extended tanh-function method for solving nonlinear partial differential equations. Phys. Lett. A 299(2), 179–188 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Eslami, M., Rezazadeh, H.: The first integral method for Wu-Zhang system with conformable time-fractional derivative. Calcolo 53, 475–485 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gómez, S., Cesar, A.: A nonlinear fractional Sharma-Tasso-Olver equation. App. Math. Comput. 266, 385–389 (2015)

    Article  MATH  Google Scholar 

  21. Hosseini, K., Ansari, R.: New exact solutions of nonlinear conformable time-fractional Boussinesq equations using the modified Kudryashov method Waves in random and complex media 27(4), 628–636 (2017)

    Google Scholar 

  22. Hosseini, K., Bekir, A., Ansari, R.: Exact solutions of nonlinear conformable time-fractional Boussinesq equations using the exp(\(-\phi (\varepsilon )\))-expansion method. Opt. Quant. Electron. 49, 131 (2017)

    Article  Google Scholar 

  23. Inan, I.E., Ugurlu, Y., Bulut, H.: Auto-Bäcklund transformation for some nonlinear partial differential equation. Optik - Int. J. Light Electr. Opt. 127(22), 10780–10785 (2016)

    Article  Google Scholar 

  24. Jawad, A.J.M., Petković, M.D., Laketa, P., Biswas, A.: Dynamics of shallow water waves with Boussinesq equation. Scientia Iranica B 20(1), 179–184 (2013)

    Google Scholar 

  25. Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kudryashov, N.A.: One method for finding exact solutions of nonlinear differential equations Commun. Nonlinear Sci. Numer. Simulat. 17(6), 2048–2053 (2012)

    Article  Google Scholar 

  27. Lu, B.: The first integral method for some time fractional differential equations. J. Math. Anal. Appl. 395(2), 684–693 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Madsen, P.A., Murray, R., Sorensen, O.R.: A new form of the Boussinesq equations with improved linear dispersion characteristics. Coast Engl. J. 15(4), 371–388 (1991)

    Article  Google Scholar 

  29. Manafian, J., Lakestani, M.: Application of tan(//2)-expansion method for solvingthe Biswas-Milovic equation for Kerr law nonlinearity, Optik - Int. J. Light Electr. Opt. 127(4), 2040–2054 (2012)

    Article  Google Scholar 

  30. Matinfar, M., Eslami, M., Kordy, M.: The functional variable method for solving thefractional Korteweg de Vries equations and the coupled Korteweg de Vries equations. Pramana J Phys. 85, 583–592 (2015)

    Article  Google Scholar 

  31. Oldham, K., Spanier, J.: The Fractional Calculus, Hardcover: 234 pages. Academic Press, Cambridge (1974)

  32. Sahadevan, R., Prakash, P.: Exact solutions and maximal dimension of invariant subspaces of time fractional coupled nonlinear partial differential equations. Commun. Nonlinear Sci. Numer. Simulat. 42, 158–177 (2017)

  33. Samko, S., Kilbas, A., Marichev, O.: Fractional integrals and derivatives, Gordon and Breach, Amsterdam [Engl. Trans. from the Russian], (1993)

  34. Triki, H., Kara, A.H., Biswas, A.: Domain walls to Boussinesq-type equations in (2 + 1)-dimensions. Indian J. Phys. 88(7), 751–755 (2014)

    Article  Google Scholar 

  35. Wang, L.Z., Wang, D.J., Shen, S.F., Huang, Q.: Lie point symmetry analysis of the Harry-Dym type equation with Riemann-Liouville fractional derivative. Acta. Math. Appl. Sinica. 34, 469–477 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, M.M., Shen, S.F., Wang, L.Z.: Lie symmetry analysis, optimal system and conservation laws of a new (2+1)-dimensional KdV system. Commun. Theor. Phys. 73(8), 085004 (2021)

    Article  MathSciNet  Google Scholar 

  37. Wazwaz, A.-M.: Multiple-soliton solutions for the KP equation by Hirota’s bilinear method and by the tanh-coth method. Appl. Math. Comput. 190(1), 633–640 (2007)

    MathSciNet  MATH  Google Scholar 

  38. Yang, Y., Wang, L.Z.: Lie symmetry analysis, conservation laws and separation variable type solutions of the time fractional Porous Medium equation. Wave. Random. Complex. 49, 1–20 (2020)

    Google Scholar 

  39. Yaslan, H.Ç., Girgin, A.: Exp-function method for the conformable space-time fractional STO, ZKBBM and coupled Boussinesq equations. Arab J. Basic Appl. Sci. 26, 163–170 (2019)

    Article  Google Scholar 

  40. Yildirim, O., Caglak, S.: Lie point symmetries of difference equation for nonlinear sine-Gordon equation. Physica Scripta 94, 085219(8) (2019)

    Article  Google Scholar 

  41. Yildirim, O., Uzun, M.: On the numerical solutions of high order stable difference schemes for the hyperbolic multipoint nonlocal boundary value problems. Appl. Math. Comput 254, 210–218 (2015)

    MathSciNet  MATH  Google Scholar 

  42. Yildirim, O., Uzun, M.: Weak solvability of the unconditionally stable difference scheme for the coupled sine-Gordon system. Nonlinear Anal.: Model. Control 25(6), 997–1014 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zayed, E.M.E., Alurrfi, K.A.E.: A new Jacobi elliptic function expansion method for solving a nonlinear PDE describing the nonlinear low-pass electrical lines. Chaos Solitons Fractals 78, 148–155 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zheng, B.: Exp-function method for solving fractional partial differential equations. Sci. World J. 2013, 465723 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erdoğan Mehmet Özkan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özkan, E.M., Özkan, A. On exact solutions of some important nonlinear conformable time-fractional differential equations. SeMA 80, 303–318 (2023). https://doi.org/10.1007/s40324-022-00290-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40324-022-00290-5

Keywords

Mathematics Subject Classification

Navigation